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This talk is dedicated to all victims of war and terrorism.
Our thoughts are with the victims and their families.
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Black-box weather forecasting

Weather data
350 stations located in US

Features:
Tmax, Tmin, precipitation,
wind speed, wind direction ,...

Black-box forecasting multiple weather stations simultaneously

[Signoretto, Frandi, Karevan, Suykens, IEEE-SCCI, 2014]
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Challenges

• data-driven

• general methodology

• scalability

• need for new mathematical frameworks

Learning with primal and dual model representations: a unifying picture - Johan Suykens 4



Outline talk

• Sparsity in parametric and kernel based models

• Learning with primal and dual representations:

- Supervised and unsupervised learning, and beyond

- Sparsity, robustness, networks, big data

• New variational principle for SVD

• New unifying theory for deep learning and kernel machines
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Different paradigms

SVM &

Kernel methods

Convex

Optimization

Sparsity &

Compressed sensing
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Learning with primal and dual model representations: a unifying picture - Johan Suykens 6



Sparsity through regularization or loss function
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Sparsity: through regularization or loss function

• through regularization: model ŷ = wTx+ b

min
∑

j

|wj| + γ
∑

i

e2i

⇒ sparse w

• through loss function: model ŷ =
∑

i αiK(x, xi) + b

min wTw + γ
∑

i

L(ei)

⇒ sparse α

−ε 0 +ε
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Sparsity: matrices and tensors

neuroscience: EEG data
(time samples × frequency × electrodes)

computer vision: image (/video) compression/completion/· · ·
(pixel × illumination × expression × · · ·)

web mining: analyze users behaviors
(users × queries × webpages)

vector x matrix X tensor X

data vector x −→ data matrix X −→ data tensor X
vector model: −→ matrix model: −→ tensor model:
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Sparsity: matrices and tensors

vector x matrix X tensor X

data vector x −→ data matrix X −→ data tensor X
vector model: −→ matrix model: −→ tensor model:
ŷ = wTx ŷ = 〈W,X〉 ŷ = 〈W,X〉

sparsity: sparsity: sparsity:
∑

j |wj| ‖W‖∗ ‖W‖∗

Learning with tensors [Signoretto, Tran Dinh, De Lathauwer, Suykens, ML 2014]

Robust tensor completion [Yang, Feng, Suykens, 2014]
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Function estimation in RKHS

• Find function f such that [Wahba, 1990; Evgeniou et al., 2000]

min
f∈HK

1

N

N
∑

i=1

L(yi, f(xi)) + λ‖f‖2
K

with L(·, ·) the loss function. ‖f‖K is norm in RKHS HK defined by K.

• Representer theorem: for convex loss function, solution of the form

f(x) =
N

X

i=1

αiK(x, xi)

Reproducing property f(x) = 〈f,Kx〉K with Kx(·) = K(x, ·)

• Sparse representation by ǫ-insensitive loss [Vapnik, 1998]
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Kernels

Wide range of positive definite kernel functions possible:

- linear K(x, z) = xTz
- polynomial K(x, z) = (η + xTz)d

- radial basis function K(x, z) = exp(−‖x− z‖2
2/σ

2)
- splines
- wavelets
- string kernel
- kernels from graphical models
- Fisher kernels
- graph kernels
- data fusion kernels
- tensorial kernels
- other

[Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004; Jebara et al., 2004; other]
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Learning with primal and dual model representations
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Learning models from data: alternative views

- Consider model ŷ = f(x;w), given input/output data {(xi, yi)}
N
i=1:

min
w
wTw + γ

N
∑

i=1

(yi − f(xi;w))2

- Rewrite the problem as

minw,e wTw + γ
∑N

i=1 (yi − f(xi;w))2

subject to ei = yi − f(xi;w), i = 1, ..., N

- Construct Lagrangian and take condition for optimality

- For a model f(x;w) =
∑h

j=1wjϕj(x) = wTϕ(x) one obtains then

f̂(x) =
∑N

i=1αiK(x, xi) with K(x, xi) = ϕ(x)Tϕ(xi).
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Learning models from data: alternative views

- Consider model ŷ = f(x;w), given input/output data {(xi, yi)}
N
i=1:

min
w

wTw + γ

N
∑

i=1

(yi − f(xi;w))2

- Rewrite the problem as

min
w,e

wTw + γ
∑N

i=1 e
2
i

subject to ei = yi − f(xi;w), i = 1, ..., N

- Express the solution and the model in terms of Lagrange multipliers αi

- For a model f(x;w) =
∑h

j=1wjϕj(x) = wTϕ(x) one obtains then

f̂(x) =
∑N

i=1αiK(x, xi) with K(x, xi) = ϕ(x)Tϕ(xi).
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Least Squares Support Vector Machines: “core models”

• Regression

min
w,b,e

wTw + γ
∑

i

e2i s.t. yi = wTϕ(xi) + b+ ei, ∀i

• Classification

min
w,b,e

wTw + γ
∑

i

e2i s.t. yi(w
Tϕ(xi) + b) = 1 − ei, ∀i

• Kernel pca (V = I), Kernel spectral clustering (V = D−1)

min
w,b,e

−wTw + γ
∑

i

vie
2
i s.t. ei = wTϕ(xi) + b, ∀i

• Kernel canonical correlation analysis/partial least squares

min
w,v,b,d,e,r

wTw + vTv + ν
∑

i

(ei − ri)
2 s.t.

{

ei = wTϕ(1)(xi) + b
ri = vTϕ(2)(yi) + d

[Suykens & Vandewalle, 1999; Suykens et al., 2002; Alzate & Suykens, 2010]
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Probability and quantum mechanics

• Kernel pmf estimation
– Primal:

min
w,pi

1
2〈w,w〉 subject to pi = 〈w,ϕ(xi)〉, i = 1, ..., N and

∑N
i=1 pi = 1

– Dual: pi =
PN

j=1 K(xj,xi)
PN

i=1

PN
j=1 K(xj,xi)

• Quantum measurement: state vector |ψ〉, measurement operators Mi

– Primal:

min
|w〉,pi

1
2 〈w|w〉 subject to pi = Re(〈w|Miψ〉), i = 1, ..., N and

∑N
i=1 pi = 1

– Dual: pi = 〈ψ|Mi|ψ〉 (Born rule, orthogonal projective measurement)

[Suykens, Physical Review A, 2013]
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SVMs: living in two worlds ...
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ŷ = sign[wTϕ(x) + b]
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Linear model: solving in primal or dual?

inputs x ∈ R
d, output y ∈ R

training set {(xi, yi)}
N
i=1

(P ) : ŷ = wTx+ b, w ∈ R
d

ր
Model

ց
(D) : ŷ =

∑

i αi x
T
i x+ b, α ∈ R

N
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Linear model: solving in primal or dual?

inputs x ∈ R
d, output y ∈ R

training set {(xi, yi)}
N
i=1

(P ) : ŷ = wTx+ b, w ∈ R
d

ր
Model

ց
(D) : ŷ =

∑

i αi x
T
i x+ b, α ∈ R

N
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Linear model: solving in primal or dual?

few inputs, many data points: d≪ N

primal : w ∈ R
d

dual: α ∈ R
N (large kernel matrix: N ×N)
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Linear model: solving in primal or dual?

many inputs, few data points: d≫ N

primal: w ∈ R
d

dual : α ∈ R
N (small kernel matrix: N ×N)
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Feature map and kernel

From linear to nonlinear model:

(P ) : ŷ = wTϕ(x) + b
ր

Model
ց

(D) : ŷ =
∑

i αiK(xi, x) + b

Mercer theorem:
K(x, z) = ϕ(x)Tϕ(z)

Feature map ϕ(x) = [ϕ1(x);ϕ2(x); ...;ϕh(x)]
Kernel function K(x, z) (e.g. linear, polynomial, RBF, ...)

• Use of feature map and positive definite kernel [Cortes & Vapnik, 1995]

• Extension to infinite dimensional case:

- LS-SVM formulation [Signoretto, De Lathauwer, Suykens, 2011]

- HHK Transform, coherent states, wavelets [Fanuel & Suykens, 2015]
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Hilbert space to RKHS Transform

• Coherent states {|ηx〉 ∈ H}x∈X in

min
|w〉∈H,ei,b

1

2
〈w|w〉H+

γ

2

N
∑

i=1

e2i s.t. yi = 〈ηxi
|w〉H+b+ei, i = 1, ..., N

• HHK Transform: Wη : H → HK : |w〉 7→ 〈η·|w〉H

(P ) : ŷ = 〈ηx|w〉H + b ŷ = 〈Wηηx|Wηw〉K + b
ր

M ↓ K(x, z) = 〈ηx|ηz〉H ↓ K(x, z) = 〈ξx|ξz〉K , ξx = Wηηx

ց
(D) : ŷ =

∑

i αiK(xi, x) + b ŷ =
∑

i αiK(xi, x) + b

[Fanuel & Suykens, TR15-101, 2015]: including wavelet transform, graph wavelets
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Hilbert space to RKHS Transform

• Coherent states {|ηx〉 ∈ H}x∈X in
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1
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2
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∑
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Learning in Krein spaces: indefinite kernels

• LS-SVM classifier for indefinite kernel case:

min
w+,w−,b,e

1

2
(wT

+w+ − wT
−w−) +

γ

2

N
∑

i=1

e2i s.t. yi(w
T
+ϕ+(xi) + wT

−ϕ−(xi) + b) = 1 − ei, ∀i

with indefinite kernel K

K(xi, xj) = K+(xi, xj) −K−(xi, xj)

with positive definite kernels K+, K−

K+(xi, xj) = ϕ+(xi)
Tϕ+(xj) and K−(xi, xj) = ϕ−(xi)

Tϕ−(xj)

• similarly also for kernel PCA with indefinite kernel

[X. Huang, Maier, Hornegger, Suykens, TR15-214, 2015]

Related work of RKKS: [Ong et al 2004; Haasdonk 2005; Luss 2008; Loosli et al. 2015]
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Learning in Banach spaces: generalized SVR

• Continuous representer theorem (from Fenchel-Rockafellar duality) for

min
(w,b,e)∈F×R×Lp(P )

G(w) + γ

Z

X×Y

L(e(x, y))dP (x, y) s.t. y − 〈w, ϕ(x)〉 − b = e(x, y)

∀P − a.a.(x, y) ∈ X × Y

• Special case:

min
(w,b,e)∈ℓr(K)×R×RN

ρ(‖w‖r) +
γ

N

N
X

i=1

L(ei) s.t. yi − 〈w, ϕ(xi)〉 − b = ei , ∀i

with F = ℓr(K) and r = m
m−1 for even m ≥ 2, ρ convex and even

(approaches ℓ1 regularization for m large)

• Tensor-kernel representation (b = 0), matrix case K(xi, x) for m = 2:

ŷ = 〈w, ϕ(x)〉r,r∗ =
1

Nm−1

N
X

i1,...,im−1=1

ui1
...uim−1

K(xi1
, ..., xim−1

, x)

[Salzo & Suykens, arXiv 1603.05876], related: RKBS [Zhang 2013; Fasshauer et al. 2015]

Learning with primal and dual model representations: a unifying picture - Johan Suykens 20



Sparsity by fixed-size kernel method
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Fixed-size method: steps

1. selection of a subset from the data (random, quadratic Renyi entropy,
incomplete Cholesky factorization, other)

2. kernel matrix on the subset

3. eigenvalue decomposition of kernel matrix

4. approximation of the feature map based on the eigenvectors
(Nyström approximation) [Williams & Seeger, 2001]

5. estimation of the model in the primal using the approximate feature map
(applicable to large data sets)

[Suykens et al., 2002] (ls-svm book)
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Fixed-size method: performance in classification
pid spa mgt adu ftc

N 768 4601 19020 45222 581012

Ncv 512 3068 13000 33000 531012

Ntest 256 1533 6020 12222 50000

d 8 57 11 14 54

FS-LSSVM (# SV) 150 200 1000 500 500

C-SVM (# SV) 290 800 7000 11085 185000

ν-SVM (# SV) 331 1525 7252 12205 165205

RBF FS-LSSVM 76.7(3.43) 92.5(0.67) 86.6(0.51) 85.21(0.21) 81.8(0.52)

Lin FS-LSSVM 77.6(0.78) 90.9(0.75) 77.8(0.23) 83.9(0.17) 75.61(0.35)

RBF C-SVM 75.1(3.31) 92.6(0.76) 85.6(1.46) 84.81(0.20) 81.5(no cv)

Lin C-SVM 76.1(1.76) 91.9(0.82) 77.3(0.53) 83.5(0.28) 75.24(no cv)

RBF ν-SVM 75.8(3.34) 88.7(0.73) 84.2(1.42) 83.9(0.23) 81.6(no cv)

Maj. Rule 64.8(1.46) 60.6(0.58) 65.8(0.28) 83.4(0.1) 51.23(0.20)

• Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and ν-SVM

[De Brabanter et al., CSDA 2010]

• Challenging to achieve high performance by very sparse models:

- Mall & Suykens [TNNLS 2015]: Very Sparse LSSVM Reductions

- Gauthier & Suykens [KU Leuven TR16-26, 2016]: Energy and Discrepancy SVMs
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Kernel PCA and kernel spectral clustering
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Kernel PCA

• Primal problem: [Suykens et al., 2002]

min
w,b,e

1

2
wTw −

1

2
γ

N
∑

i=1

e2i s.t. ei = wTϕ(xi) + b, i = 1, ..., N.

• Dual problem corresponds to kernel PCA [Scholkopf et al., 1998]

Ωcα = λα with λ = 1/γ

with Ωc,ij = (ϕ(xi) − µ̂ϕ)T (ϕ(xj) − µ̂ϕ) the centered kernel matrix.

• Robust and sparse versions [Alzate & Suykens, 2008]: by taking other
loss functions
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Robustness: Kernel Component Analysis

original image corrupted image

KPCA reconstruction KCA reconstruction

Weighted LS-SVM [Alzate & Suykens, IEEE-TNN 2008]: robustness and sparsity
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Kernel Spectral Clustering (KSC)

• Primal problem: training on given data {xi}
N
i=1

min
w,b,e

1

2
wTw − γ

1

2
eTV e

subject to ei = wTϕ(xi) + b, i = 1, ..., N

with weighting matrix V and ϕ(·) : R
d → R

h the feature map.

• Dual:
VMV Ωα = λα

with λ = 1/γ, MV = IN − 1
1T

N
V 1N

1N1T
NV weighted centering matrix,

Ω = [Ωij] kernel matrix with Ωij = ϕ(xi)
Tϕ(xj) = K(xi, xj)

• Taking V = D−1 with degree matrix D = diag{di}, di =
∑N

j=1 Ωij

relates to random walks algorithm [Chung, 1997; Shi & Malik, 2000; Ng 2002]

[Alzate & Suykens, IEEE-PAMI, 2010]
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Advantages of kernel-based setting

• model-based approach

• out-of-sample extensions, applying model to new data

• consider training, validation and test data
(training problem corresponds to eigenvalue decomposition problem)

• model selection procedures

• sparse representations and large scale methods
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Model selection: toy example
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Example: image segmentation
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Hierarchical KSC

[Alzate & Suykens, 2012]
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Representative subgraphs - Power grid network

Pajek

KSC community detection, representative subgraphs [Langone et al., 2012]

Western USA power grid: 4941 nodes, 6594 edges [Watts & Strogatz, 1998]
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KSC for big data networks (1)

• Select representative training subgraph

• Perform model selection using Balanced Angular Fit (BAF) (cosine
similarity measure) related to the e-projection values on validation nodes)

• Train the KSC model by solving a small eigenvalue problem of size
min(0.15N, 5000)2

• Apply out-of-sample extension to find cluster memberships of the
remaining nodes

Dataset Nodes Edges
YouTube 1,134,890 2,987,624
roadCA 1,965,206 5,533,214

Livejournal 3,997,962 34,681,189

[Mall, Langone, Suykens, Entropy, special issue Big data, 2013]
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KSC for big data networks (2)

BAF-KSC [Mall, Langone, Suykens, 2013] Louvain [Blondel et al., 2008]

Infomap [Lancichinetti, Fortunato, 2009] CNM [Clauset, Newman, Moore, 2004]

Dataset BAF-KSC Louvain Infomap CNM

Cl Q Con Cl Q Con Cl Q Con Cl Q Con

Openflight 5 0.533 0.002 109 0.61 0.02 18 0.58 0.005 84 0.60 0.016

PGPnet 8 0.58 0.002 105 0.88 0.045 84 0.87 0.03 193 0.85 0.041

Metabolic 10 0.22 0.028 10 0.43 0.03 41 0.41 0.05 11 0.42 0.021

HepTh 6 0.45 0.0004 172 0.65 0.004 171 0.3 0.004 6 0.423 0.0004

HepPh 5 0.56 0.0004 82 0.72 0.007 69 0.62 0.06 6 0.48 0.0007

Enron 10 0.4 0.002 1272 0.62 0.05 1099 0.37 0.27 6 0.25 0.0045

Epinion 10 0.22 0.0003 33 0.006 0.0003 17 0.18 0.0002 10 0.14 0.0

Condmat 6 0.28 0.0002 1030 0.79 0.03 1086 0.79 0.025 8 0.38 0.0003

Flight network (Openflights), network based on trust (PGPnet), biological network

(Metabolic), citation networks (HepTh, HepPh), communication network (Enron), review

based network (Epinion), collaboration network (Condmat) [snap.stanford.edu]

Cl = Clusters, Q = modularity, Con = Conductance

BAF-KSC usually finds a smaller number of clusters and achieves lower conductance
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Multilevel Hierarchical KSC for complex networks (1)

Generating a series of affinity matrices over different levels:

communities at level h become nodes for next level h + 1
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Multilevel Hierarchical KSC for complex networks (2)

MH-KSC on PGP network:

fine intermediate intermediate coarse

Multilevel Hierarchical KSC finds high quality clusters at coarse as well as
fine and intermediate levels of hierarchy.

[Mall, Langone, Suykens, PLOS ONE, 2014]
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Multilevel Hierarchical KSC for complex networks (3)

Louvain

Infomap

OSLOM

Louvain, Infomap, and OSLOM seem biased toward a particular scale

in comparison with MH-KSC, based upon ARI, V I, Q metrics
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Big data: representative subsets using k-NN graphs (1)

• Convert the large scale dataset into a sparse undirected k-NN graph
using a distributed network generation framework

• Julia language (http://julialang.org/)

• Large N ×N kernel matrix Ω for data set D with N data points

• Batch cluster-based approach: a batch subset Dp ⊂ D is loaded per
node with ∪P

p=1Dp = D; related matrix slice Xp and Ωp.

• MapReduce and AllReduce settings implementable using Hadoop or
Spark (see also [Agarwal et al., JMLR 2014] Terascale linear learning)

• Computational complexity: complexity for construction of the kernel
matrix reduced from O(N2) to O(N2(1 + logN)/P ) for P nodes

[Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014]
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Big data: representative subsets using k-NN graphs (2)

Map: for Silverman’s Rule of Thumb, compute mean and standard deviation
of the data per node; compute slice Ωp; sort in ascending order the columns
of Ωp (sortperm in Julia); pick indices for top k values.
Reduce: merge k-NN subgraphs into aggregated k-NN graph

[Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014]
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Incremental KSC clustering of PM10 concentrations (1)

PM10 time-series: PM10 data (Particulate Matter) registered during a
heavy pollution episode (Jan 20 2010 - Feb 1 2010) in Europe.
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[Langone, Agudelo, De Moor, Suykens, Neurocomputing, 2014]
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Incremental KSC clustering of PM10 concentrations (2)

Applies out-of-sample eigenvectors for fast incremental KSC learning
video - [Langone, Agudelo, De Moor, Suykens, Neurocomputing, 2014]
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Core models + constraints

+Core model
additional constraints

regularization terms
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Core models + constraints

+Core model
additional constraints

model estimate

regularization terms

optimal model representation
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Adding prior knowledge: example

original image without constraints
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Adding prior knowledge: example

original image with constraints
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Semi-supervised learning using KSC (1)

• N unlabeled data, but additional labels on M −N data
X = {x1, ..., xN , xN+1, ..., xM}

• Kernel spectral clustering as core model (binary case [Alzate & Suykens,
WCCI 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS 2015])

min
w,e,b

1

2
wTw − γ

1

2
eTD−1e+ρ

1

2

M
∑

m=N+1

(em − ym)2

subject to ei = wTϕ(xi) + b, i = 1, ...,M

Dual solution is characterized by a linear system. Suitable for clustering
as well as classification.

• Other approaches in semi-supervised learning and manifold learning, e.g.
[Belkin et al., 2006]
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Semi-supervised learning using KSC (2)

original image KSC

given a few labels semi-supervised KSC

[Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS 2015], videos
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SVD from LS-SVM setting
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SVD within the LS-SVM setting (1)

• Singular Value Decomposition (SVD) of A ∈ R
N×M

A = UΣV T

with UTU = IN , V TV = IM , Σ = diag(σ1, ..., σp) ∈ R
N×M .

• Obtain two sets of data points (rows and columns):
xi = AT ǫi, zj = Aεj for i = 1, ..., N , j = 1, ...,M where ǫi, εj are
standard basis vectors of dimension N and M .

• Compatible feature maps: ϕ : R
M → R

N , ψ : R
N → R

N where

ϕ(xi) = CTxi = CTAT ǫi
ψ(zj) = zj = Aεj

with C ∈ R
M×N a compatibility matrix.

[Suykens, ACHA 2016]
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SVD within the LS-SVM setting (2)

• Primal problem (new variational principle):

min
w,v,e,r

− wTv + 1
2γ

∑N
i=1 e

2
i + 1

2γ
∑M

j=1 r
2
j subject to ei = wTϕ(xi), i = 1, ..., N

rj = vTψ(zj), j = 1, ...,M

• From the Lagrangian and conditions for optimality one obtains:

[

0 [ϕ(xi)
Tψ(zj)]

[ψ(zj)
Tϕ(xi)] 0

] [

α
β

]

= (1/γ)

[

α
β

]

• Theorem: If ACA = A holds, this corresponds to the shifted eigenvalue
problem in Lanczos’ decomposition theorem.

• Goes beyond the use of Mercer theorem; extensions to nonlinear SVDs

[Suykens, ACHA 2016]
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Linear versus nonlinear SVD: example

SVD

lin+pol

exp, η = 1

exp, η = −1

original 20 comp. 100 comp.
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New theory Deep Learning with Kernel Machines
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Different paradigms

Deep

Learning

Neural

Networks

LS-SVM &

Kernel methods
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Different paradigms

Deep

Learning

Neural

Networks

LS-SVM &

Kernel methods

?
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Deep learning

• Learning feature hierarchies

• Deep networks versus shallow networks

• Excellent performance e.g. computer vision, speech recognition, language
processing

• Deep belief networks
Deep Boltzmann machines
Convolutional neural networks
Stacked autoencoders with pretraining and finetuning

[LeCun, Bengio, Hinton, Nature 2015; Hinton 2005; Bengio 2009; Salakhutdinov 2015]
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New theory Deep Learning with Kernel Machines

Main characteristics:

• Based on conjugate feature duality

• Interpretation of visible and hidden units for several kernel machines
(LS-SVM regression/classification, Kernel PCA, SVD, Parzen-type)

• Restricted Kernel Machine (RKM) representation, related to RBM

• Neural networks interpretations (hidden layer corresponds to feature map)

• Deep RKM by coupling RKMs over different levels

[Suykens J.A.K., “Deep Restricted Kernel Machines using Conjugate Feature Duality”,

Internal Report 16-50, ESAT-SISTA, KU Leuven 2016]
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Restricted Boltzmann Machines (RBM)

v

h

• Markov random field, characterized by a bipartite graph with layer of
visible units v and layer of hidden units h; stochastic binary units

• No hidden-to-hidden connections
Energy:

E(v, h; θ) = −vTWh− cTv − aTh

• Joint distribution: P (v, h; θ) = 1
Z(θ) exp(−E(v, h; θ)) with partition

function Z(θ) =
∑

v

∑

h exp(−E(v, h; θ)) for normalization.

• RBMs used for deep belief networks.

[Hinton, Osindero, Teh, NC 2006]
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Restricted Kernel Machines (RKM) - Example LS-SVM (1)

Multi-output model ŷ = W Tx+ b, e = y − ŷ

Objective in LS-SVM regression (linear case)

J =
η

2
Tr(W TW ) +

1

2λ

N
∑

i=1

eT
i ei s.t. ei = yi −W Txi − b,∀i

≥
N

∑

i=1

eT
i hi −

λ

2

N
∑

i=1

hT
i hi +

η

2
Tr(W TW ) s.t. ei = yi −W Txi − b,∀i

=
N

∑

i=1

(yT
i − xT

i W − bT )hi −
λ

2

N
∑

i=1

hT
i hi +

η

2
Tr(W TW ) , J(hi,W, b)

= Rtrain
RKM −

λ

2

N
∑

i=1

hT
i hi +

η

2
Tr(W TW )
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Restricted Kernel Machines (RKM) - Example LS-SVM (2)

• Based on property: 1
2λ
eTe ≥ eTh− λ

2h
Th, ∀e, h and

1
2λ
eTe = maxh(eTh− λ

2h
Th).

• Conjugate feature duality: hidden features hi are conjugated to the ei

• Interpretation in terms of visible and hidden units

Rtrain
RKM =

N
∑

i=1

RRKM(vi, hi)

= −

N
∑

i=1

(xT
i Whi + bThi − yT

i hi) =

N
∑

i=1

eT
i hi

with RRKM(v, h) = −vTW̃h = −(xTWh+ bTh− yTh) = eTh.
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Restricted Kernel Machines (RKM) - Example LS-SVM (3)

• Stationary points of J(hi,W, b) (nonlinear case, feature map ϕ(·))



























∂J

∂hi

= 0 ⇒ yi = W
T
ϕ(xi) + b + λhi, ∀i

∂J

∂W
= 0 ⇒ W =

1

η

X

i

ϕ(xi)h
T
i

∂J

∂b
= 0 ⇒

X

i

hi = 0.

• Solution in hi and b with positive definite kernelK(xi, xj) = ϕ(xi)
Tϕ(xj)

[ 1
η
K + λIN 1N

1T
N 0

] [

HT

bT

]

=

[

Y T

0

]

with K = [K(xi, xj)], H = [h1...hN ], Y = [y1...yN ].
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Restricted Kernel Machines (RKM) - Example LS-SVM (4)

v

h
x ϕ(x)

yy

e

Primal and dual model representations:

(P )RKM : ŷ = W Tϕ(x) + b

ր

M

ց

(D)RKM : ŷ =
1

η

X

j

hjK(xj, x) + b.

[Suykens J.A.K., Internal Report 16-50, ESAT-SISTA, KU Leuven 2016]
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Deep RKM

v

h(1)x ϕ1(x)

yy

e(1)
ϕ2(h

(1))
e(2)h(2)

ϕ3(h
(2))

e(3)h(3)

Deep RKM: LSSVM + KPCA + KPCA

Coupling of RKMs by taking sum of the objectives

Jdeep = J1 + J2 + J3

with inner pairings
∑N

i=1 e
(1)
i

T
h

(1)
i ,

∑N
i=1 e

(2)
i

T
h

(2)
i ,

∑N
i=1 e

(3)
i

T
h

(3)
i
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Deep RKM - Example USPS data
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USPS (10 classes): Deep RKM: LSSVM (Krbf) + KPCA (Klin) + KPCA (Klin)

Training algorithm: forward & backward phases, kernel fusion between levels

N = 2000: test error 3.26% (basic) - 3.18% (deep) (Ntest = 5000)
N = 4000: test error 2.14% (basic) - 2.12% (deep) (Ntest = 5000)

[Suykens J.A.K., Internal Report 16-50, ESAT-SISTA, KU Leuven 2016]
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Conclusions

• Synergies parametric and kernel based-modelling

• Primal and dual representations

• Sparsity, robustness, networks, big data

• SVD from LS-SVM, nonlinear extensions to SVD

• Beyond Mercer kernels

• Deep learning and kernel machines: Deep RKM

Software: see ERC AdG A-DATADRIVE-B website
www.esat.kuleuven.be/stadius/ADB/software.php
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