Learning with primal and dual model representations: a unifying picture

Johan Suykens

KU Leuven, ESAT-STADIUS Kasteelpark Arenberg 10 B-3001 Leuven (Heverlee), Belgium Email: johan.suykens@esat.kuleuven.be http://www.esat.kuleuven.be/stadius/

Plenary talk ICASSP 2016 Shanghai

This talk is dedicated to all victims of war and terrorism. Our thoughts are with the victims and their families.

Data & Signals World

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Black-box weather forecasting

Weather data 350 stations located in US

Features: Tmax, Tmin, precipitation, wind speed, wind direction ,...

Black-box forecasting multiple weather stations simultaneously

[Signoretto, Frandi, Karevan, Suykens, IEEE-SCCI, 2014]

Challenges

- data-driven
- general methodology
- scalability
- need for new mathematical frameworks

Outline talk

- Sparsity in parametric and kernel based models
- Learning with primal and dual representations:
 - Supervised and unsupervised learning, and beyond
 - Sparsity, robustness, networks, big data
- New variational principle for SVD
- New unifying theory for deep learning and kernel machines

Different paradigms

SVM &

Kernel methods

Convex

Optimization

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Different paradigms

Sparsity through regularization or loss function

Sparsity: through regularization or loss function

• through regularization: model $\hat{y} = w^T x + b$

$$\min \sum_{j} |w_{j}| + \gamma \sum_{i} e_{i}^{2}$$

 \Rightarrow sparse w

• through loss function: model $\hat{y} = \sum_i \alpha_i K(x, x_i) + b$

$$\min \ w^T w + \gamma \sum_i L(e_i)$$

 \Rightarrow sparse α

Sparsity: matrices and tensors

neuroscience: EEG data (time samples × frequency × electrodes) computer vision: image (/video) compression/completion/··· (pixel × illumination × expression × ···) web mining: analyze users behaviors (users × queries × webpages)

Learning with tensors [Signoretto, Tran Dinh, De Lathauwer, Suykens, ML 2014] Robust tensor completion [Yang, Feng, Suykens, 2014]

Function estimation in RKHS

• Find function f such that [Wahba, 1990; Evgeniou et al., 2000]

$$\min_{f \in \mathcal{H}_K} \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i)) + \lambda \|f\|_K^2$$

with $L(\cdot, \cdot)$ the loss function. $||f||_K$ is norm in RKHS \mathcal{H}_K defined by K.

• Representer theorem: for convex loss function, solution of the form

$$f(x) = \sum_{i=1}^{N} \alpha_i K(x, x_i)$$

Reproducing property $f(x) = \langle f, K_x \rangle_K$ with $K_x(\cdot) = K(x, \cdot)$

• Sparse representation by ϵ -insensitive loss [Vapnik, 1998]

Kernels

Wide range of positive definite kernel functions possible:

- linear $K(x,z) = x^T z$
- polynomial $K(x,z) = (\eta + x^T z)^d$
- radial basis function $K(x,z) = \exp(-\|x-z\|_2^2/\sigma^2)$
- splines
- wavelets
- string kernel
- kernels from graphical models
- Fisher kernels
- graph kernels
- data fusion kernels
- tensorial kernels
- other

[Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004; Jebara et al., 2004; other]

Learning with primal and dual model representations

Learning models from data: alternative views

- Consider model $\hat{y} = f(x; w)$, given input/output data $\{(x_i, y_i)\}_{i=1}^N$:

$$\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + \gamma \sum_{i=1}^N \left(y_i - f(x_i; \boldsymbol{w}) \right)^2$$

Learning models from data: alternative views

- Consider model $\hat{y} = f(x; w)$, given input/output data $\{(x_i, y_i)\}_{i=1}^N$:

$$\min_{w} w^{T}w + \gamma \sum_{i=1}^{N} (y_{i} - f(x_{i}; w))^{2}$$

- Rewrite the problem as

$$\min_{\substack{w,e \\ w \in i}} w^T w + \gamma \sum_{i=1}^N e_i^2$$

subject to $e_i = y_i - f(x_i; w), i = 1, ..., N$

- Express the solution and the model in terms of Lagrange multipliers $lpha_i$

- For a model
$$f(x;w) = \sum_{j=1}^{h} w_j \varphi_j(x) = w^T \varphi(x)$$
 one obtains then $\hat{f}(x) = \sum_{i=1}^{N} \alpha_i K(x,x_i)$ with $K(x,x_i) = \varphi(x)^T \varphi(x_i)$.

Least Squares Support Vector Machines: "core models"

• Regression

$$\min_{w,b,e} w^T w + \gamma \sum_i e_i^2 \quad \text{s.t.} \quad y_i = w^T \varphi(x_i) + b + e_i, \quad \forall i$$

• Classification

$$\min_{w,b,e} w^T w + \gamma \sum_i e_i^2 \quad \text{s.t.} \quad y_i(w^T \varphi(x_i) + b) = 1 - e_i, \quad \forall i$$

• Kernel pca (V = I), Kernel spectral clustering $(V = D^{-1})$

$$\min_{w,b,e} -w^T w + \gamma \sum_i v_i e_i^2 \quad \text{s.t.} \quad e_i = w^T \varphi(x_i) + b, \quad \forall i$$

• Kernel canonical correlation analysis/partial least squares

$$\min_{w,v,b,d,e,r} w^T w + v^T v + \nu \sum_i (e_i - r_i)^2 \text{ s.t. } \begin{cases} e_i = w^T \varphi^{(1)}(x_i) + b \\ r_i = v^T \varphi^{(2)}(y_i) + d \end{cases}$$

[Suykens & Vandewalle, 1999; Suykens et al., 2002; Alzate & Suykens, 2010]

Probability and quantum mechanics

• Kernel pmf estimation

- Primal:

 $\min_{w,p_i} \frac{1}{2} \langle w, w \rangle \text{ subject to } p_i = \langle w, \varphi(x_i) \rangle, i = 1, ..., N \text{ and } \sum_{i=1}^N p_i = 1$

- Dual:
$$p_i = \frac{\sum_{j=1}^N K(x_j, x_i)}{\sum_{i=1}^N \sum_{j=1}^N K(x_j, x_i)}$$

• Quantum measurement: state vector $|\psi\rangle$, measurement operators M_i – *Primal:*

$$\min_{|w\rangle, p_i} \frac{1}{2} \langle w|w\rangle \text{ subject to } p_i = \operatorname{Re}(\langle w|M_i\psi\rangle), i = 1, ..., N \text{ and } \sum_{i=1}^N p_i = 1$$

- Dual: $p_i = \langle \psi | M_i | \psi \rangle$ (Born rule, orthogonal projective measurement)

[Suykens, Physical Review A, 2013]

SVMs: living in two worlds ...

SVMs: living in two worlds ...

 $K(x, \tilde{x}_{\#sv})$

inputs $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$ training set $\{(x_i, y_i)\}_{i=1}^N$

$$(P): \quad \hat{y} = w^T x + b, \qquad w \in \mathbb{R}^d$$
Model

inputs $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$ training set $\{(x_i, y_i)\}_{i=1}^N$

few inputs, many data points: $d \ll N$

primal :
$$w \in \mathbb{R}^d$$

dual: $\alpha \in \mathbb{R}^N$ (large kernel matrix: $N \times N$)

many inputs, few data points: $d \gg N$

primal:
$$w \in \mathbb{R}^d$$

dual: $\alpha \in \mathbb{R}^N$ (small kernel matrix: $N \times N$)

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Feature map and kernel

From linear to nonlinear model:

$$(P): \quad \hat{y} = w^T \varphi(x) + b$$
Model
$$(D): \quad \hat{y} = \sum_i \alpha_i K(x_i, x) + b$$

Mercer theorem:

$$K(x,z) = \varphi(x)^T \varphi(z)$$

Feature map $\varphi(x) = [\varphi_1(x); \varphi_2(x); ...; \varphi_h(x)]$ Kernel function K(x, z) (e.g. linear, polynomial, RBF, ...)

- Use of feature map and positive definite kernel [Cortes & Vapnik, 1995]
- Extension to infinite dimensional case:
 - LS-SVM formulation [Signoretto, De Lathauwer, Suykens, 2011]
 - HHK Transform, coherent states, wavelets [Fanuel & Suykens, 2015]

Hilbert space to RKHS Transform

• Coherent states $\{|\eta_x\rangle \in \mathcal{H}\}_{x\in X}$ in

$$\min_{|w\rangle\in\mathcal{H},e_i,b}\frac{1}{2}\langle w|w\rangle_{\mathcal{H}} + \frac{\gamma}{2}\sum_{i=1}^{N}e_i^2 \quad \text{s.t.} \quad y_i = \langle \eta_{x_i}|w\rangle_{\mathcal{H}} + b + e_i, \quad i = 1, ..., N$$

Hilbert space to RKHS Transform

• Coherent states $\{|\eta_x\rangle \in \mathcal{H}\}_{x \in X}$ in

$$\min_{|w\rangle\in\mathcal{H},e_i,b}\frac{1}{2}\langle w|w\rangle_{\mathcal{H}} + \frac{\gamma}{2}\sum_{i=1}^{N}e_i^2 \quad \text{s.t.} \quad y_i = \langle \eta_{x_i}|w\rangle_{\mathcal{H}} + b + e_i, \quad i = 1, ..., N$$

• HHK Transform: $W_{\eta} : \mathcal{H} \to \mathcal{H}_{K} : |w\rangle \mapsto \langle \eta | w \rangle_{\mathcal{H}}$

[Fanuel & Suykens, TR15-101, 2015]: including wavelet transform, graph wavelets

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Learning in Krein spaces: indefinite kernels

• LS-SVM classifier for indefinite kernel case:

$$\min_{w_+,w_-,b,e} \frac{1}{2} (w_+^T w_+ - w_-^T w_-) + \frac{\gamma}{2} \sum_{i=1}^N e_i^2 \text{ s.t. } y_i (w_+^T \varphi_+(x_i) + w_-^T \varphi_-(x_i) + b) = 1 - e_i, \forall i$$

with **indefinite kernel** K

$$K(x_i, x_j) = K_+(x_i, x_j) - K_-(x_i, x_j)$$

with positive definite kernels K_+, K_-

$$K_+(x_i, x_j) = \varphi_+(x_i)^T \varphi_+(x_j)$$
 and $K_-(x_i, x_j) = \varphi_-(x_i)^T \varphi_-(x_j)$

• similarly also for kernel PCA with indefinite kernel

[X. Huang, Maier, Hornegger, Suykens, TR15-214, 2015] Related work of RKKS: [Ong et al 2004; Haasdonk 2005; Luss 2008; Loosli et al. 2015]

Learning in Banach spaces: generalized SVR

• Continuous representer theorem (from Fenchel-Rockafellar duality) for

$$\min_{(w,b,e)\in\mathcal{F}\times\mathbb{R}\times L^{p}(P)}G(w) + \gamma \int_{\mathcal{X}\times\mathcal{Y}}L(e(x,y))dP(x,y) \quad \text{s.t. } y - \langle w,\varphi(x)\rangle - b = e(x,y)$$
$$\forall P - a.a.(x,y)\in\mathcal{X}\times\mathcal{Y}$$

• Special case:

$$\min_{\substack{(w,b,e)\in\ell^r(\mathbb{K})\times\mathbb{R}\times\mathbb{R}^N}}\rho(\|w\|_r) + \frac{\gamma}{N}\sum_{i=1}^N L(e_i) \text{ s.t. } y_i - \langle w,\varphi(x_i)\rangle - b = e_i, \forall i$$

with $\mathcal{F} = \ell^r(\mathbb{K})$ and $r = \frac{m}{m-1}$ for even $m \ge 2$, ρ convex and even
(approaches ℓ^1 regularization for m large)

• Tensor-kernel representation (b = 0), matrix case $K(x_i, x)$ for m = 2:

$$\hat{y} = \langle w, \varphi(x) \rangle_{r,r^*} = \frac{1}{N^{m-1}} \sum_{i_1, \dots, i_{m-1}=1}^N u_{i_1} \dots u_{i_{m-1}} K(x_{i_1}, \dots, x_{i_{m-1}}, x)$$

[Salzo & Suykens, arXiv 1603.05876], related: RKBS [Zhang 2013; Fasshauer et al. 2015]

Sparsity by fixed-size kernel method

Fixed-size method: steps

- 1. **selection of a subset** from the data (random, quadratic Renyi entropy, incomplete Cholesky factorization, other)
- 2. kernel matrix on the subset
- 3. eigenvalue decomposition of kernel matrix
- 4. **approximation of the feature map** based on the eigenvectors (Nyström approximation) [Williams & Seeger, 2001]
- 5. estimation of the model in the primal using the approximate feature map (applicable to large data sets)

```
[Suykens et al., 2002] (Is-svm book)
```

Fixed-si	ze metho	od: perfo	rmance i	n classific	ation	
	pid	spa	mgt	adu	ftc	
N	768	4601	19020	45222	581012	.2
$N_{ m cv}$	512	3068	13000	33000	531012	.2
$N_{ m test}$	256	1533	6020	12222	50000	C
d	8	57	11	14	54	
FS-LSSVM (# SV)	150	200	1000	500	500	
C-SVM (# SV)	290	800	7000	11085	18500	0
u-SVM ($#$ SV)	331	1525	7252	12205	16520	15
RBF FS-LSSVM	76.7(3.43)	92.5(0.67)	86.6(0.51)	85.21(0.21)	81.8(0.5	52)
Lin FS-LSSVM	77.6(0.78)	90.9(0.75)	77.8(0.23)	83.9(0.17)	75.61(0.3	.35)
RBF C-SVM	75.1(3.31)	92.6(0.76)	85.6(1.46)	84.81(0.20)	81.5(no	cv)
Lin C-SVM	76.1(1.76)	91.9(0.82)	77.3(0.53)	83.5(0.28)	75.24(no	o cv)
RBF ν -SVM	75.8(3.34)	88.7(0.73)	84.2(1.42)	83.9(0.23)	81.6(no	cv)
Maj. Rule	64.8(1.46)	60.6(0.58)	65.8(0.28)	83.4(0.1)	51.23(0.2	.20)

- Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and ν -SVM [De Brabanter et al., CSDA 2010]
- Challenging to achieve high performance by very sparse models:
 - Mall & Suykens [TNNLS 2015]: Very Sparse LSSVM Reductions
 - Gauthier & Suykens [KU Leuven TR16-26, 2016]: Energy and Discrepancy SVMs

Kernel PCA and kernel spectral clustering

Kernel PCA

• Primal problem: [Suykens et al., 2002]

$$\min_{w,b,e} \frac{1}{2} w^T w - \frac{1}{2} \gamma \sum_{i=1}^{N} e_i^2 \quad \text{s.t.} \quad e_i = w^T \varphi(x_i) + b, \ i = 1, ..., N.$$

• Dual problem corresponds to kernel PCA [Scholkopf et al., 1998]

$$\Omega_c \alpha = \lambda \alpha$$
 with $\lambda = 1/\gamma$

with $\Omega_{c,ij} = (\varphi(x_i) - \hat{\mu}_{\varphi})^T (\varphi(x_j) - \hat{\mu}_{\varphi})$ the centered kernel matrix.

• Robust and sparse versions [Alzate & Suykens, 2008]: by taking other loss functions

Robustness: Kernel Component Analysis

original image

corrupted image

KPCA reconstruction

KCA reconstruction

Weighted LS-SVM [Alzate & Suykens, IEEE-TNN 2008]: robustness and sparsity
Kernel Spectral Clustering (KSC)

• **Primal problem:** training on given data $\{x_i\}_{i=1}^N$

$$\min_{\substack{w,b,e\\\text{subject to}}} \frac{1}{2}w^T w - \gamma \frac{1}{2}e^T V e$$

subject to $e_i = w^T \varphi(x_i) + b, \quad i = 1, ..., N$

with weighting matrix V and $\varphi(\cdot): \mathbb{R}^d \to \mathbb{R}^h$ the feature map.

• Dual:

 $VM_V\Omega\alpha = \lambda\alpha$

with $\lambda = 1/\gamma$, $M_V = I_N - \frac{1}{1_N^T V 1_N} 1_N 1_N^T V$ weighted centering matrix, $\Omega = [\Omega_{ij}]$ kernel matrix with $\Omega_{ij} = \varphi(x_i)^T \varphi(x_j) = K(x_i, x_j)$

• Taking $V = D^{-1}$ with degree matrix $D = \text{diag}\{d_i\}$, $d_i = \sum_{j=1}^N \Omega_{ij}$ relates to random walks algorithm [Chung, 1997; Shi & Malik, 2000; Ng 2002]

[Alzate & Suykens, IEEE-PAMI, 2010]

Advantages of kernel-based setting

- model-based approach
- out-of-sample extensions, applying model to new data
- consider **training**, **validation** and **test** data (training problem corresponds to eigenvalue decomposition problem)
- model selection procedures
- sparse representations and large scale methods

Model selection: toy example

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Example: image segmentation

Hierarchical KSC

[Alzate & Suykens, 2012]

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Representative subgraphs - Power grid network

KSC community detection, representative subgraphs [Langone et al., 2012] Western USA power grid: 4941 nodes, 6594 edges [Watts & Strogatz, 1998]

KSC for big data networks (1)

- Select representative training subgraph
- Perform **model selection** using Balanced Angular Fit (BAF) (cosine similarity measure) related to the *e*-projection values on validation nodes)
- Train the KSC model by solving a small eigenvalue problem of size $\min(0.15N, 5000)^2$
- Apply **out-of-sample extension** to find cluster memberships of the remaining nodes

Dataset	Nodes	Edges
YouTube	1,134,890	2,987,624
roadCA	1,965,206	5,533,214
Livejournal	3,997,962	34,681,189

[Mall, Langone, Suykens, Entropy, special issue Big data, 2013]

KSC for big data networks (2)

BAF-KSC[Mall, Langone, Suykens, 2013]Louvain[Blondel et al., 2008]Infomap[Lancichinetti, Fortunato, 2009]CNM[Clauset, Newman, Moore, 2004]

Dataset		BAF-K	SC		Louvai	n		Infoma	р		CNM	
	CI	Q	Con	CI	Q	Con	CI	Q	Con	CI	Q	Con
Openflight	5	0.533	0.002	109	0.61	0.02	18	0.58	0.005	84	0.60	0.016
PGPnet	8	0.58	0.002	105	0.88	0.045	84	0.87	0.03	193	0.85	0.041
Metabolic	10	0.22	0.028	10	0.43	0.03	41	0.41	0.05	11	0.42	0.021
HepTh	6	0.45	0.0004	172	0.65	0.004	171	0.3	0.004	6	0.423	0.0004
HepPh	5	0.56	0.0004	82	0.72	0.007	69	0.62	0.06	6	0.48	0.0007
Enron	10	0.4	0.002	1272	0.62	0.05	1099	0.37	0.27	6	0.25	0.0045
Epinion	10	0.22	0.0003	33	0.006	0.0003	17	0.18	0.0002	10	0.14	0.0
Condmat	6	0.28	0.0002	1030	0.79	0.03	1086	0.79	0.025	8	0.38	0.0003

Flight network (Openflights), network based on trust (PGPnet), biological network (Metabolic), citation networks (HepTh, HepPh), communication network (Enron), review based network (Epinion), collaboration network (Condmat) [snap.stanford.edu]

CI = Clusters, Q = modularity, Con = Conductance

BAF-KSC usually finds a smaller number of clusters and achieves lower conductance

Multilevel Hierarchical KSC for complex networks (1)

Generating a series of affinity matrices over different levels: communities at level h become nodes for next level h + 1

Multilevel Hierarchical KSC for complex networks (2)

MH-KSC on PGP network:

Multilevel Hierarchical KSC finds high quality clusters at coarse as well as fine and intermediate levels of hierarchy.

[Mall, Langone, Suykens, PLOS ONE, 2014]

Multilevel Hierarchical KSC for complex networks (3)

Louvain, Infomap, and OSLOM seem biased toward a particular scale in comparison with MH-KSC, based upon ARI, VI, Q metrics

Big data: representative subsets using k-NN graphs (1)

- Convert the large scale dataset into a sparse undirected k-NN graph using a distributed network generation framework
- Julia language (http://julialang.org/)
- Large $N\times N$ kernel matrix Ω for data set ${\mathcal D}$ with N data points
- Batch cluster-based approach: a batch subset $\mathcal{D}_p \subset \mathcal{D}$ is loaded per node with $\cup_{p=1}^{P} \mathcal{D}_p = \mathcal{D}$; related matrix slice X_p and Ω_p .
- MapReduce and AllReduce settings implementable using Hadoop or Spark (see also [Agarwal et al., JMLR 2014] Terascale linear learning)
- Computational complexity: complexity for construction of the kernel matrix reduced from $\mathcal{O}(N^2)$ to $\mathcal{O}(N^2(1+\log N)/P)$ for P nodes

[Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014]

Big data: representative subsets using k-NN graphs (2)

Map: for Silverman's Rule of Thumb, compute mean and standard deviation of the data per node; compute slice Ω_p ; sort in ascending order the columns of Ω_p (sortperm in Julia); pick indices for top k values. **Reduce:** merge k-NN subgraphs into aggregated k-NN graph

[Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014]

Incremental KSC clustering of PM10 concentrations (1)

PM10 time-series: PM10 data (Particulate Matter) registered during a heavy pollution episode (Jan 20 2010 - Feb 1 2010) in Europe.

[Langone, Agudelo, De Moor, Suykens, Neurocomputing, 2014]

Incremental KSC clustering of PM10 concentrations (2)

Applies *out-of-sample eigenvectors* for fast incremental KSC learning video - [Langone, Agudelo, De Moor, Suykens, Neurocomputing, 2014]

Core models + constraints

Core models + constraints

Adding prior knowledge: example

original image

without constraints

Adding prior knowledge: example

original image

with constraints

Semi-supervised learning using KSC (1)

- N unlabeled data, but additional labels on M N data $\mathcal{X} = \{x_1, ..., x_N, x_{N+1}, ..., x_M\}$
- Kernel spectral clustering as core model (binary case [Alzate & Suykens, WCCI 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS 2015])

$$\min_{w,e,b} \frac{1}{2}w^T w - \gamma \frac{1}{2}e^T D^{-1}e + \rho \frac{1}{2} \sum_{m=N+1}^{M} (e_m - y_m)^2$$

subject to $e_i = w^T \varphi(x_i) + b, \ i = 1, ..., M$

Dual solution is characterized by a linear system. Suitable for clustering as well as classification.

• Other approaches in semi-supervised learning and manifold learning, e.g. [Belkin et al., 2006]

Semi-supervised learning using KSC (2) KSC

semi-supervised KSC

original image

given a few labels

[Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS 2015], videos

SVD from LS-SVM setting

SVD within the LS-SVM setting (1)

• Singular Value Decomposition (SVD) of $A \in \mathbb{R}^{N \times M}$

$A = U\Sigma V^T$

with $U^T U = I_N$, $V^T V = I_M$, $\Sigma = \text{diag}(\sigma_1, ..., \sigma_p) \in \mathbb{R}^{N \times M}$.

- Obtain two sets of data points (rows and columns):
 x_i = A^T ϵ_i, z_j = Aε_j for i = 1,...,N, j = 1,...,M where ϵ_i, ε_j are standard basis vectors of dimension N and M.
- Compatible feature maps: $\varphi: \mathbb{R}^M \to \mathbb{R}^N$, $\psi: \mathbb{R}^N \to \mathbb{R}^N$ where

$$\begin{array}{lcl} \varphi(x_i) &=& C^T x_i = C^T A^T \epsilon_i \\ \psi(z_j) &=& z_j = A \varepsilon_j \end{array}$$

with $C \in \mathbb{R}^{M \times N}$ a compatibility matrix.

[Suykens, ACHA 2016]

SVD within the LS-SVM setting (2)

• **Primal problem** (new variational principle):

 $\min_{w,v,e,r} - w^T v + \frac{1}{2} \gamma \sum_{i=1}^N e_i^2 + \frac{1}{2} \gamma \sum_{j=1}^M r_j^2 \text{ subject to } e_i = w^T \varphi(x_i), \ i = 1, ..., N$ $r_j = v^T \psi(z_j), \ j = 1, ..., M$

• From the Lagrangian and conditions for optimality one obtains:

$$\begin{bmatrix} 0 & [\varphi(x_i)^T \psi(z_j)] \\ [\psi(z_j)^T \varphi(x_i)] & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = (1/\gamma) \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

- **Theorem**: If ACA = A holds, this corresponds to the shifted eigenvalue problem in Lanczos' decomposition theorem.
- Goes beyond the use of Mercer theorem; extensions to nonlinear SVDs

[Suykens, ACHA 2016]

Linear versus nonlinear SVD: example

original

20 comp.

100 comp.

 $\mathsf{lin}+\mathsf{pol}$

exp, $\eta = 1$

Learning with primal and dual model representations: a unifying picture - Johan Suykens

New theory Deep Learning with Kernel Machines

Different paradigms

Deep	
Learning	

Neural	
Networks	

Different paradigms

Deep learning

- Learning feature hierarchies
- Deep networks versus shallow networks
- Excellent performance e.g. computer vision, speech recognition, language processing
- Deep belief networks
 Deep Boltzmann machines
 Convolutional neural networks
 Stacked autoencoders with pretraining and finetuning

[LeCun, Bengio, Hinton, Nature 2015; Hinton 2005; Bengio 2009; Salakhutdinov 2015]

New theory Deep Learning with Kernel Machines

Main characteristics:

- Based on conjugate feature duality
- Interpretation of **visible and hidden units** for several kernel machines (LS-SVM regression/classification, Kernel PCA, SVD, Parzen-type)
- Restricted Kernel Machine (RKM) representation, related to RBM
- Neural networks interpretations (hidden layer corresponds to feature map)
- **Deep RKM** by coupling RKMs over different levels

[Suykens J.A.K., "Deep Restricted Kernel Machines using Conjugate Feature Duality", Internal Report 16-50, ESAT-SISTA, KU Leuven 2016] **Restricted Boltzmann Machines (RBM)**

- Markov random field, characterized by a bipartite graph with layer of visible units v and layer of hidden units h; stochastic binary units
- No hidden-to-hidden connections Energy:

$$E(v,h;\theta) = -v^T W h - c^T v - a^T h$$

- Joint distribution: $P(v,h;\theta) = \frac{1}{Z(\theta)} \exp(-E(v,h;\theta))$ with partition function $Z(\theta) = \sum_{v} \sum_{h} \exp(-E(v,h;\theta))$ for normalization.
- RBMs used for deep belief networks.

[Hinton, Osindero, Teh, NC 2006]

Restricted Kernel Machines (RKM) - Example LS-SVM (1)

Multi-output model $\hat{y} = W^T x + b$, $e = y - \hat{y}$

Objective in LS-SVM regression (linear case)

$$J = \frac{\eta}{2} \text{Tr}(W^T W) + \frac{1}{2\lambda} \sum_{i=1}^{N} e_i^T e_i \text{ s.t. } e_i = y_i - W^T x_i - b, \forall i$$

Restricted Kernel Machines (RKM) - Example LS-SVM (1)

Multi-output model $\hat{y} = W^T x + b$, $e = y - \hat{y}$

Objective in LS-SVM regression (linear case)

$$J = \frac{\eta}{2} \text{Tr}(W^T W) + \frac{1}{2\lambda} \sum_{i=1}^{N} e_i^T e_i \text{ s.t. } e_i = y_i - W^T x_i - b, \forall i$$

$$\geq \sum_{i=1}^{N} e_i^T h_i - \frac{\lambda}{2} \sum_{i=1}^{N} h_i^T h_i + \frac{\eta}{2} \text{Tr}(W^T W) \text{ s.t. } e_i = y_i - W^T x_i - b, \forall i$$

Restricted Kernel Machines (RKM) - Example LS-SVM (1)

Multi-output model $\hat{y} = W^T x + b$, $e = y - \hat{y}$

Objective in LS-SVM regression (linear case)

$$J = \frac{\eta}{2} \operatorname{Tr}(W^{T}W) + \frac{1}{2\lambda} \sum_{i=1}^{N} e_{i}^{T} e_{i} \text{ s.t. } e_{i} = y_{i} - W^{T} x_{i} - b, \forall i$$

$$\geq \sum_{\substack{i=1\\N}}^{N} e_{i}^{T} h_{i} - \frac{\lambda}{2} \sum_{i=1}^{N} h_{i}^{T} h_{i} + \frac{\eta}{2} \operatorname{Tr}(W^{T}W) \text{ s.t. } e_{i} = y_{i} - W^{T} x_{i} - b, \forall i$$

$$= \sum_{\substack{i=1\\N}}^{N} (y_{i}^{T} - x_{i}^{T}W - b^{T}) h_{i} - \frac{\lambda}{2} \sum_{i=1}^{N} h_{i}^{T} h_{i} + \frac{\eta}{2} \operatorname{Tr}(W^{T}W) \triangleq \underline{J}(h_{i}, W, b)$$

$$= R_{\mathrm{RKM}}^{\mathrm{train}} - \frac{\lambda}{2} \sum_{i=1}^{N} h_{i}^{T} h_{i} + \frac{\eta}{2} \operatorname{Tr}(W^{T}W)$$

Learning with primal and dual model representations: a unifying picture - Johan Suykens

Restricted Kernel Machines (RKM) - Example LS-SVM (2)

- Based on property: $\frac{1}{2\lambda}e^T e \ge e^T h \frac{\lambda}{2}h^T h$, $\forall e, h$ and $\frac{1}{2\lambda}e^T e = \max_h(e^T h \frac{\lambda}{2}h^T h)$.
- Conjugate feature duality: hidden features h_i are conjugated to the e_i
- Interpretation in terms of visible and hidden units

$$R_{\text{RKM}}^{\text{train}} = \sum_{i=1}^{N} R_{\text{RKM}}(v_i, h_i)$$

= $-\sum_{i=1}^{N} (x_i^T W h_i + b^T h_i - y_i^T h_i) = \sum_{i=1}^{N} e_i^T h_i$

with
$$R_{\text{RKM}}(v,h) = -v^T \tilde{W}h = -(x^T W h + b^T h - y^T h) = e^T h.$$

Restricted Kernel Machines (RKM) - Example LS-SVM (3)

• Stationary points of $\underline{J}(h_i, W, b)$ (nonlinear case, feature map $\varphi(\cdot)$)

$$\begin{cases} \frac{\partial \underline{J}}{\partial h_i} = 0 \quad \Rightarrow \quad y_i = W^T \varphi(x_i) + b + \lambda h_i, \ \forall i \\ \frac{\partial \underline{J}}{\partial W} = 0 \quad \Rightarrow \quad W = \frac{1}{\eta} \sum_i \varphi(x_i) h_i^T \\ \frac{\partial \underline{J}}{\partial b} = 0 \quad \Rightarrow \quad \sum_i h_i = 0. \end{cases}$$

• Solution in h_i and b with positive definite kernel $K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$

$$\begin{bmatrix} \frac{1}{\eta}K + \lambda I_N & 1_N \\ 1_N^T & 0 \end{bmatrix} \begin{bmatrix} H^T \\ b^T \end{bmatrix} = \begin{bmatrix} Y^T \\ 0 \end{bmatrix}$$

with
$$K = [K(x_i, x_j)]$$
, $H = [h_1...h_N]$, $Y = [y_1...y_N]$.

Learning with primal and dual model representations: a unifying picture - Johan Suykens
Restricted Kernel Machines (RKM) - Example LS-SVM (4)

Primal and dual model representations:

$$(P)_{\text{RKM}}: \quad \hat{y} = W^T \varphi(x) + b$$

$$\mathcal{M}$$

$$(D)_{\text{RKM}}: \quad \hat{y} = \frac{1}{\eta} \sum_j h_j K(x_j, x) + b_j$$

[Suykens J.A.K., Internal Report 16-50, ESAT-SISTA, KU Leuven 2016]

Deep RKM: LSSVM + KPCA + KPCA

Coupling of RKMs by taking sum of the objectives

$$J_{\text{deep}} = \underline{J}_1 + \overline{J}_2 + \overline{J}_3$$

with inner pairings
$$\sum_{i=1}^{N} e_i^{(1)T} h_i^{(1)}, \sum_{i=1}^{N} e_i^{(2)T} h_i^{(2)}, \sum_{i=1}^{N} e_i^{(3)T} h_i^{(3)}$$

Deep RKM - Example USPS data

USPS (10 classes): Deep RKM: LSSVM $(K_{\rm rbf})$ + KPCA $(K_{\rm lin})$ + KPCA $(K_{\rm lin})$ Training algorithm: forward & backward phases, kernel fusion between levels N = 2000: test error 3.26% (basic) - 3.18% (deep) $(N_{\rm test} = 5000)$ N = 4000: test error 2.14% (basic) - 2.12% (deep) $(N_{\rm test} = 5000)$

[Suykens J.A.K., Internal Report 16-50, ESAT-SISTA, KU Leuven 2016]

Conclusions

- Synergies parametric and kernel based-modelling
- Primal and dual representations
- Sparsity, robustness, networks, big data
- SVD from LS-SVM, nonlinear extensions to SVD
- Beyond Mercer kernels
- Deep learning and kernel machines: Deep RKM

Software: see ERC AdG A-DATADRIVE-B website www.esat.kuleuven.be/stadius/ADB/software.php

Acknowledgements (1)

• Co-workers at ESAT-STADIUS:

M. Agudelo, C. Alaiz, C. Alzate, A. Argyriou, R. Castro, J. De Brabanter, K. De Brabanter, L. De Lathauwer, B. De Moor, M. Espinoza, M. Fanuel, Y. Feng, E. Frandi, B. Gauthier, D. Geebelen, H. Hang, X. Huang, L. Houthuys, V. Jumutc, Z. Karevan, R. Langone, Y. Liu, R. Mall, S. Mehrkanoon, M. Novak, J. Puertas, S. Salzo, L. Shi, M. Signoretto, V. Van Belle, J. Vandewalle, S. Van Huffel, C. Varon, X. Xi, Y. Yang, and others

- Many people for joint work, discussions, invitations, organizations
- Support from ERC AdG A-DATADRIVE-B, KU Leuven, GOA-MaNet, OPTEC, IUAP DYSCO, FWO projects, IWT, iMinds, BIL, COST

Acknowledgements (2)

Thank you