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Definition

Deep learning is a class of machine learning algorithms that[1](pp199–200)

• use a cascade of many layers of nonlinear processing .
• are part of the broader machine learning field of learning 

representations of data facilitating end-to-end optimization.
• learn multiple levels of representations that correspond to 

hierarchies of concept abstraction
• …, …

https://en.wikipedia.org/wiki/Deep_learning#cite_note-BOOK2014-1
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Artificial intelligence (AI) is the intelligence exhibited by 
machines or software. It is also the name of the academic field 
of study on how to create computers and computer software
that are capable of intelligent behavior.

Artificial general intelligence (AGI) is the intelligence of a (hypothetical) machine 
that could successfully perform any intellectual task that a human being can. It is 
a primary goal of artificial intelligence research and an important topic for science 
fiction writers and futurists. Artificial general intelligence is also referred to as 
"strong AI“…

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Science_fiction
https://en.wikipedia.org/wiki/Futurist


AI/(A)GI & Deep Learning: the main thesis

AI/GI = machine perception (speech, image, video, gesture, 
touch...)    

+ machine cognition (natural language, reasoning, 
attention, memory/learning,

knowledge, decision making, action, 
interaction/conversation, …)

GI: AI that is flexible, general, adaptive, learning from 1st

principles       

Deep Learning + Reinforcement/Unsupervised Learning 
AI/GI 
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AI/GI & Deep Learning: how AlphaGo fits

AI/GI = machine perception (speech, image, video, gesture, 
touch...)    

+ machine cognition (natural language, reasoning, 
attention, memory/learning,

knowledge, decision making, action, 
interaction/conversation, …)

AGI: AI that is flexible, general, adaptive, learning from 1st

principles       

Deep Learning + Reinforcement/Unsupervised Learning 
AI/AGI 
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Outline

• Deep learning for machine perception
• Speech

• Image

• Deep learning for machine cognition
• Semantic modeling

• Natural language

• Multimodality

• Reasoning, attention, memory (RAM)

• Knowledge representation/management/exploitation

• Optimal decision making (by deep reinforcement learning)

• Three hot areas/challenges of deep learning & AI research
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Deep learning Research: centered at NIPS
(Neural Information Processing Systems) 
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Dec 7-12, 2015

2009

2013
Zuckerberg &
LeCun,  

Hinton & ImageNet
& “bidding” 2012 

Hinton &
MSR 

Musk & RAM
& OpenAI

Deep
Learning
Tutorial 
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Scientists See Promise in Deep-Learning Programs
John Markoff

November 23, 2012

Tianjin, China, October, 25, 2012

Deep learning 

technology enabled 

speech-to-speech 

translation

The Universal 

Translator …comes true!

A voice recognition program translated a speech given by 

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese. 
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CD-DNN-HMM invented, 2010 

Deep belief networks for phone recognition, NIPS, December 2009; 2012

Investigation of full-sequence training of DBNs for speech recognition., Interspeech, Sept 2010

Binary coding of speech spectrograms using a deep auto-encoder,        Interspeech, Sept 2010

Roles of Pre-Training & Fine-Tuning in CD-DBN-HMMs for Real-World ASR,  NIPS, Dec. 2010

Large Vocabulary Continuous Speech Recognition With CD-DNN-HMMS, ICASSP,  April 2011 

Conversational Speech Transcription Using Contxt-Dependent DNN,Interspeech, Aug. 2011 

Making deep belief networks effective for LVCSR, ASRU, Dec. 2011 

Application of Pretrained DNNs to Large Vocabulary Speech Recognition., ICASSP, 2012 

【胡郁】讯飞超脑 2.0 是怎样炼成的？2011, 2015

http://www.cs.utoronto.ca/~gdahl/papers/dbnPhoneRec.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=143619
http://research.microsoft.com/apps/pubs/default.aspx?id=144224
http://scholar.google.com/scholar_url?url=http://vincent.vanhoucke.com/publications/jaitly-interspeech12.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=21&ei=LibSVuvAA4mSjAHV_5_ICA&scisig=AAGBfm31Nz5rwrQtZiDuAayf5vs_3KjwaA&nossl=1&ws=838x592
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Across-the-Board Deployment of DNN in Speech Industry
(+ in university labs & DARPA programs)                                                       (2012-2014)
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In the academic world
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“This joint paper (2012) 

from the major speech 

recognition laboratories 

details the first major 

industrial application of 
deep learning.”



15

State-of-the-Art Speech Recognition Today
(& tomorrow --- roles of unsupervised learning)



ASR: Neural Network Architectures at 

Single Channel:

LSTM acoustic model trained with 

connectionist temporal classification (CTC)

Results on a 2,000-hr English Voice Search 

task show an 11% relative improvement

Papers: [H. Sak et al - ICASSP 2015, 

Interspeech 2015, A. Senior et al - ASRU 

2015]

Multi-Channel:

Multi-channel raw-waveform input for each channel

Initial network layers factored to do spatial and 

spectral filtering

Output passed to a CLDNN acoustic model, entire 

network trained jointly

Results on a 2,000-hr English Voice Search task 

show more than 10% relative improvement

Papers: [T. N. Sainath et al - ASRU 2015, ICASSP 

2016]

Model WER

raw-waveform, 1ch 19.2

delay+sum, 8 channel 18.7

MVDR, 8 channel 18.8

factored raw-waveform, 2ch 17.1

Model WER

LSTM w/ conventional 

modeling

14.0

LSTM w/ CTC 12.9%

(Sainath, Senior, Sak, Vinyals)

(Slide credit: Tara Sainath & Andrew Senior)



Baidu’s Deep Speech 2 
End-to-End DL System for Mandarin and English

Paper: bit.ly/deepspeech2

• Human-level Mandarin 
recognition on short queries:

– DeepSpeech:  3.7% - 5.7% CER
– Humans:             4% - 9.7% CER

• Trained on 12,000 hours of 
conversational, read, mixed 
speech.

• 9 layer RNN with CTC cost:
2D invariant convolution
7 recurrent layers
Fully connected output

• Trained with SGD on heavily-
optimized HPC system.  
“SortaGrad” curriculum 
learning.

• “Batch Dispatch” framework 
for low-latency production 
deployment.

(Slide credit: Andrew Ng & Adam Coates)



DNN outputs include not only state posterior outputs but also HMM transition 
probabilities

Real-time reduction of 16%

WER reduction of 10%

Learning transition probabilities in DNN-HMM ASR

Matthias Paulik, “Improvements to the Pruning Behavior of DNN Acoustic 
Models”. Interspeech 2015

Transition probsState posteriors

Siri data

(Slide: Alex Acero)



FSMN-based LVCSR System 
 Feed-forward Sequential Memory 

Network(FSMN)
 Results on 10,000 hours Mandarin 

short message dictation task
 8 hidden layers
 Memory block with -/+ 15 frames
 CTC training criteria

 Comparable results to DBLSTM with 
smaller model size

 Training costs only 1 day using 16 GPUs 
and ASGD algorithm

Model #Para.(M) CER (%)

ReLU DNN 40 6.40

LSTM 27.5 5.25

BLSTM 45 4.67

FSMN 19.8 4.61

Shiliang Zhang, Cong Liu, Hui Jiang, Si Wei, Lirong Dai, Yu Hu. “Feedforward Sequential Memory Networks: 

A New Structure to Learn Long-term Dependency ”. arXiv:1512.08031, 2015.
(slide credit: Cong Liu & Yu Hu)

http://arxiv.org/abs/1512.08301


English Conversational Telephone Speech Recognition*

Key ingredients:

• Joint RNN/CNN acoustic model trained on 

2000 hours of publicly available audio 

• Maxout activations

• Exponential and NN language models

WER Results on Switchboard Hub5-2000:

*Saon et al. “The IBM 2015 English Conversational Telephone Speech Recognition System”, Interspeech 2015.

conv. layer

conv. layer

output layer

bottleneck

hidden layer

hidden layer

hidden layer

hidden layer

hidden layer

RNN features CNN features

recurrent layer

bottleneck

Model WER SWB WER CH

CNN 10.4 17.9

RNN 9.9 16.3

Joint RNN/CNN 9.3 15.6

+ LM rescoring 8.0% 14.1

(Slide credit: G. Saon & B. Kingsbury)



• SP-P14.5: “SCALABLE TRAINING OF DEEP LEARNING MACHINES 

BY INCREMENTAL BLOCK TRAINING WITH INTRA-BLOCK 

PARALLEL OPTIMIZATION AND BLOCKWISE MODEL-UPDATE 

FILTERING,” by Kai Chen and Qiang Huo

(Slide credit: Xuedong Huang)



*Google updated that TensorFlow can now scale to support multiple machines recently; 

comparisons have not been made yet

• Recent Research at MS (ICASSP-2016):
-“SCALABLE TRAINING OF DEEP LEARNING MACHINES BY INCREMENTAL BLOCK TRAINING WITH INTRA-

BLOCK PARALLEL OPTIMIZATION AND BLOCKWISE MODEL-UPDATE FILTERING”

-“HIGHWAY LSTM RNNs FOR DISTANCE SPEECH RECOGNITION”

-”SELF-STABILIZED DEEP NEURAL NETWORKS”

CNTK/Phily
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Deep Learning also Shattered Image Recognition
(since 2012)
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3.567% 3.581%

Super-deep: 152 layers 

4th year
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Depth is of crucial importance

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

AlexNet, 8 layers
(ILSVRC 2012)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

input
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Dept hConcat

Conv Conv Conv Conv
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Conv Conv MaxPool 
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Conv Conv Conv Conv
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FC
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soft max0
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soft max1

Soft maxAct ivat ion

soft max2

GoogleNet, 22 layers
(ILSVRC 2014)

ILSVRC (Large Scale Visual Recognition Challenge) 

(slide credit: Jian Sun, MSR)



AlexNet, 8 layers
(ILSVRC 2012)

Depth is of crucial importance

ResNet, 152 layers
(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128
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3x3 conv, 512, pool/2
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3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2
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3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256
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3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256
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3x3 conv, 512
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ave pool, fc 1000

7x7 conv, 64, /2, pool/2

VGG, 19 layers
(ILSVRC 2014)

ILSVRC (Large Scale Visual Recognition Challenge) 

(slide credit: Jian Sun, MSR)



Depth is of crucial importance

ResNet, 152 layers 1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x2 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256
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1x1 conv, 256
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1x1 conv, 256
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3x3 conv, 256

1x1 conv, 1024
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1x1 conv, 1024

1x1 conv, 256
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3x3 conv, 256
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3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256
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3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

(slide credit: Jian Sun, MSR)



Outline

• Deep learning for machine perception
• Speech

• Image

• Deep learning for machine cognition
• Semantic modeling

• Natural language

• Multimodality

• Reasoning, attention, memory (RAM)

• Knowledge representation/management/exploitation

• Optimal decision making (by deep reinforcement learning)

• Three hot areas/challenges of deep learning & AI research
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s: “racing  car”
Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t1: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t2: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔

Deep Semantic Model for Symbol Embedding

𝒗𝒕𝟏 𝒗𝒕𝟐

similar apart

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4

Huang, P., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. Learning deep structured semantic models for 

web search using clickthrough data. In ACM-CIKM, 2013.

……,…



Many applications of Deep Semantic Modeling:
Learning semantic relationship between “Source” and “Target”

31

Tasks Source Target 

Word semantic embedding context word

Web search search query web documents

Query intent detection Search query Use intent

Question answering pattern / mention (in NL) relation / entity (in knowledge base)

Machine translation sentence in language a translated sentences in language b

Query auto-suggestion Search query Suggested query

Query auto-completion Partial search query Completed query

Apps recommendation User profile recommended Apps

Distillation of survey feedbacks Feedbacks in text Relevant feedbacks

Automatic image captioning image text caption

Image retrieval text query images

Natural user interface command (text / speech / gesture) actions

Ads selection search query ad keywords

Ads click prediction search query ad documents

Email analysis: people prediction Email content Recipients, senders

Email search Search query Email content

Email declutering Email contents Email contents in similar threads

Knowledge-base construction entity from source entity fitting desired relationship

Contextual entity search key phrase / context entity / its corresponding page

Automatic highlighting documents in reading key phrases to be highlighted

Text summarization long text summarized short text



DSSM Model

Language 
Model

Detector Models,
Deep Neural Net 

Features, …

Computer 
Vision 
System sign

stop

street
signs

on

traffic

light

red

under

building

city

pole

bus

Caption 
Generation 

System

a red stop sign sitting under a traffic light on a city street
a stop sign at an intersection on a street
a stop sign with two street signs on a pole on a sidewalk
a stop sign at an intersection on a city street
…
a stop sign
a red traffic light

Semantic 
Ranking 
System

a stop sign at an intersection on a city street

Fang, Gupta, Iandola, Srivastava, Deng, Dollar, Gao, He, Mitchell, Platt, Zitnick, Zweig, “From captions to 
visual concepts and back,” CVPR, 2015

Automatic image captioning (MSR system)



A

B



Machine:

Human:
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COCO Challenge Results (CVPR-2015, Boston)

Tied for 
1st prize
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Deep Learning for Machine Cognition

--- Deep reinforcement learning
--- “Optimal” actions: control and business decision making 
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Reinforcement learning from “non-working” to “working”, due to 
Deep Learning (much like DNN for speech)



Deep Q-Network (DQN)

• Input layer: image vector of 𝑠

• Output layer: a single output Q-value for each action 𝑎, 𝑄(𝑠, 𝑎, 𝜃)

• DNN parameters: 𝜃



Reinforcement Learning 
--- optimizing long-term values

Maximize
immediate
reward

Optimize life-time revenue,
service usages, and 
customer satisfaction

Short-term Long-term

Playing the
Breakout game

Optimizing
Business 
Decision
Making

Self play to improve skills
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DNN learning pipeline in  



DNN architecture used in  
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Analysis of four DNNs in 

DNNs Properties Architecture Additional details

Slow, accurate stochastic 
supervised learning policy, 
trained on 30M (s,a) pairs

13 layer network; alternating 
ConvNets and rectifier non-
linearities; output dist. over 
all legal moves

Evaluation time: 3 ms
Accuracy vs. corpus:  57%
Train time: 3 weeks

Fast, less accurate stochastic 
SL policy, trained on 30M 
(s,a) pairs

Linear softmax of small pattern 
features

Evaluation time: 2 us
Accuracy vs. corpus:  24%

Stochastic RL policy, trained 
by self-play

Same as Win vs.         : 80%

Value function: % chance of 
winning by starting in 

state s

Same as        , but with one 
output (% chance of 
winning)

15K less computation than evaluating 
with roll-outs

𝜋𝑆𝐿 𝑎 𝑠

෤𝜋𝑆𝐿 𝑎 𝑠

𝜋𝑅𝐿 𝑎 𝑠

𝑉(𝑠)

𝜋𝑅𝐿

𝜋𝑆𝐿

𝜋𝑆𝐿

𝜋𝑆𝐿

𝜋𝑅𝐿



Monte Carlo Tree Search in 

𝑢 𝑠, 𝑎 = 𝑐 ⋅ 𝜋𝑆𝐿 (𝑎|𝑠)
σ𝑏𝑁(𝑠, 𝑏)

1 + 𝑁(𝑠, 𝑎)

𝑄 𝑠, 𝑎 = 𝑄′ 𝑠, 𝑎 + 𝑢(𝑠, 𝑎)

𝜋(𝑠) = argmax𝑎 𝑄(𝑠, 𝑎)

# of times action a 
taken in state s

Value function 
computed in advance

Mixture weight

Win/loss result of 1 
roll-out with ෤𝜋𝑆𝐿 𝑎 𝑠

𝑄′ 𝑠, 𝑎 =
1

𝑁(𝑠, 𝑎)
෍

𝑖
1 − 𝜆 𝑉 𝑠𝐿

𝑖 + 𝜆𝑧𝐿
𝑖

Roll-out 
estimate

Exploration 
bonus

S

S

S S

S

a a

a a

V(s)

s

s

end z

• Think of this MCTS component as a highly efficient “decoder”, a concept familiar to ASR
• -> A* search and fast match in speech recognition literature during 80’s-90’s
• This is tree search (GO-specific), not graph search (A*)
• Speech is a relatively simple signal  sequential beam search sufficient, no need for A* or tree
• Key innovation in AlphaGO: “scores” in MCTS computed by DNNs with RL
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Deep Learning for Machine Cognition

--- Memory & attention (applied to machine translation)



Long Short-Term Memory RNN 

(Hochreiter & Schmidhuber, 1997)

LSTM



LSTM cell unfolding over time
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(Jozefowics, Zarembe, Sutskever, 
ICML 2015)



Gated Recurrent Unit (GRU)
(simpler than LSTM; no output gates)
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(Jozefowics, Zarembe, Sutskever, ICML 2015; Google
Kumar et al., arXiv, July, 2015; Metamind)



Deep “Thought”-Vector Approach to MTSeq-2-Seq Learning (Neural Machine Translation)

LSTM/GRU Encoder

LSTM/GRU Decoder



Neural Machine Translation
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(Forcada&Ñeco, 1997; 
Castaño&Casacuberta, 1997;
Kalchbrenner&Blunsom, 2013; 
Sutskever et al., 2014; 
Cho et al., 2014)

(slide credit: Kyunghyun Cho, 2016)

“Thought vector”



Neural Machine Translation
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• This model replying “thought vector” does not perform well

• Especially for long source sentences

• Because:

“You can’t cram the meaning of a whole 

%&!$# sentence into a single $&!#* vector!”

Ray Mooney

(modified from: Kyunghyun Cho, 2016)



Neural Machine Translation with Attention
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Attention-based Model

• Encoder: Bidirectional RNN

• A set of annotation vectors

• Attention-based Decoder

(1) Compute attention weights

(2) Weighted-sum of the annotation vectors

(3) Use      to replace “though vector” 

(modified from: Kyunghyun Cho, 2016)(modified from: Kyunghyun Cho, 2016)



BENCHMARK: WMT’14 EN-DE

0

6

12

18

24

30

Dec 2014 June 2015

Attention-based NMT 

(Bahdanau et al., 2015)

OOV Replacement

(Jean et al., 2015;

Luong et al., 2015)

Large Target Vocabulary

(Jean et al., 2015;

Luong et al., 2015)

Location+Content, Local+Global

Attention

(Luong et al., 2015a)

Phrase-based MT

(Buck et al., 2014)

(modified from: Kyunghyun Cho)



Models for Global & Local Attention

(Luong et al., 2015)

Global: all source states. Local: subset of source states.



BENCHMARK: WMT’15 EN-DE

20

21.25

22.5

23.75

25

26.25

27.5

Large Target Vocabulary

+ OOV replacement

(Jean et al., 2015)

BPE-based sub words

(Sennrich et al., 2015)

Large Target Vocabulary 

+ OOV replacement

+ Ensemble

(Jean et al., 2015)

BPE-based sub words

+ Monolingual corpus

(Sennrich et al., 2015a)

BPE-based sub words

+ Monolingual corpus

+ Ensemble

(Sennrich et al., 2015a)

Syntax-based MT

(Sennrich & Haddow, 2015)

(modified from: Kyunghyun Cho)
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Topics: Beyond Natural Languages 

— Image Caption Generation

•Conditional language modelling

•Encoder: convolutional network

•Pretrained as a classifier or autoencoder

•Decoder: recurrent neural network

•RNN Language model

•With attention mechanism (Xu et al., 2015)

Same Attention Model applied to

Image Captioning
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Deep Learning for Machine Cognition

--- Neural reasoning: memory network
--- Better neural reasoning: Tensor Product Representations

(TPR) with structured knowledge representation



Memory Networks for Reasoning

• Rather than placing 
“attention” to part of a 
sentence, it can be placed 
to cognitive space with 
many sentences

• This allows “reasoning”

• Embedding input

𝑚𝑖 = 𝐴𝑥𝑖
𝑐𝑖 = 𝐶𝑥𝑖
𝑢 = 𝐵𝑞

• Attention over memories

𝑝𝑖 = softmax(𝑢𝑇𝑚𝑖)

• Generating the final 
answer

𝑜 = σ𝑖 𝑝𝑖𝑐𝑖

𝑎 = softmax(𝑊 𝑜 + 𝑢 )

[Sukhbaatar, Szlm, Weston, Fergus: “End-to-end memory networks,” NIPS, 2015]

http://arxiv.org/pdf/1503.08895v5.pdf


61[Kumar, Irsoy, …Socher: “Ask me anything: Dynamic Memory Networks for NLP,” NIPS, 2015]

http://arxiv.org/pdf/1503.08895v5.pdf
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[Xiong, Merity, Socher: “Dynamic Memory Networks for visual & textual question answering,”ArXiv, Mar 4, 2016]
Reported in New York Times, Mar 6, 2016



TPR: Neural Representation of Structure

• Structured embedding vectors via tensor-product rep (TPR)

symbolic semantic parse tree (complex relation)

Then, reasoning in symbolic-space (traditional AI) can be beautifully 
carried out in the continuous-space in human cognitive and neural-
net terms

Paul Smolensky & G. Legendre: 
The Harmonic Mind, MIT Press, 2006
From Neural Computation to Optimality-Theoretic Grammar 

Volume I: Cognitive Architecture; Volume 2: Linguistic Implications
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Outline

• Deep learning for machine perception
• Speech

• Image

• Deep learning for machine cognition
• Semantic modeling

• Natural language

• Multimodality

• Reasoning, attention, memory (RAM)

• Knowledge representation/management/exploitation

• Optimal decision making (by deep reinforcement learning)

• Three hot areas/challenges of deep learning & AI research

64
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Challenges for Future Research

1. Structured embedding for better reasoning: integrate   
symbolic/neural representations

2. Integrate deep discriminative & generative/Bayesian 
models

3. Deep Unsupervised Learning



Aux V
A

P

by

“Passive sentence”

V

PA

Meaning (LF)

Output

Agent

B

D C F b

y E GPatien
t

Aux

F

G B

D C

Patient

Input

W
ψ

Few leaders are admired by George Bush admire(George Bush, few leaders)

W = Wcons0
[Wex1

Wex0
Wex1

] +

Wcons1
[Wcons0

(Wex1
Wex1

Wex1
)+Wcons1

(Wex0
)]

ƒ(s) = cons(ex1(ex0(ex1(s))),
cons(ex1(ex1(ex1(s))), ex0(s)))

ψ

Isomorphism

Slide from Paul Smolensky, 2015



Recurrent NN vs. Dynamic System 
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Parameterization:
• 𝑊ℎℎ,𝑊ℎ𝑦 , 𝑊𝑥ℎ: all unstructured

regular matrices

Parameterization:
• 𝑊ℎℎ =M(ɣ𝑙); sparse system matrix
• 𝑊Ω =(Ω𝑙); Gaussian-mix params; MLP 
• Λ = 𝒕𝑙



Deep Discriminative NN Deep Generative (Bayesian)

Structure Graphical; info flow: bottom-up Graphical; info flow: top-down

Incorp constraints & 
domain knowledge

Harder; less fine-grained Easier; more fine grained

Semi/unsupervised Hard or impossible Easier, at least possible

Interpretability Harder Easy (generative “story” on data and hidden variables)

Representation Distributed Localist (mostly); can be distributed also

Inference/decode Easy Harder (but note recent progress)

Scalability/compute Easier (regular computes/GPU) Harder  (but note recent progress)

Incorp. uncertainty Hard Easy

Empirical goal Classification, feature learning, … Classification (via Bayes rule), latent 
variable inference…

Terminology Neurons, activation/gate functions, 
weights … 

Random vars, stochastic “neurons”, 
potential function, parameters …

Learning algorithm A single, unchallenged, algorithm --
BackProp

A major focus of open research, many 
algorithms, & more to come

Evaluation On a black-box score – end 
performance

On almost every intermediate quantity

Implementation Hard (but increasingly easier) Standardized but insights needed

Experiments Massive, real data Modest, often simulated data

Parameterization Dense matrices Sparse (often PDFs); can be dense



Deep Unsupervised Learning
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• Unsupervised learning (UL) has recently been a very hot topic in 
deep learning 

• Need to have a task to ground UL --- e.g. help improve prediction
• Examples of speech recognition and image captioning:

• 3000 hrs of paired acoustics (X) & word label (Y)
• How can we exploit 300,000+ hrs of speech acoustics with no paired 

labels?
• 4 sources of knowledge

– Strong structure prior of “labels” Y (sequences)
– Strong structure prior of input data X (conventional UL)
– Dependency of x on y (generative modeling for embedding knowledge)
– Dependency of y on x (state of the art systems w. supervised learning)
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End 
(of Chapter 1)

Thank you!
Q/A
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Tensor Product Rep for reasoning

• Facebook’s reasoning task (bAbI):

74

Accepted to ICLR, May 2016



Structured Knowledge Representation & Reasoning via 
TPR

• Given containee-container relationship 

• Encode all entities (e.g., actors (mary), objects (football), and locations (nowhere, kitchen, 
garden)) by vectors

• Encode each statement by a matrix via binding (tensor product of two vectors), 𝑚𝑘𝑇

• Reasoning (transitivity) by matrix multiplication, 𝑓𝑚𝑇 ∙ 𝑚𝑔𝑇 = 𝑓 𝑚𝑇 ∙ 𝑚 𝑔𝑇 = 𝑓𝑔𝑇

• Generate answer (e.g., where is the football in #5) via unbinding (inner product)

a. Left-multiply by 𝑓𝑇 all statements prior to the current time. (Yields 𝑓𝑇 · 𝑚𝑘𝑇, 𝑓𝑇 · 𝑓𝑔𝑇)

b. Pick the most recent container where 2-norms of the multiplications in (a) are approximately 1.0. 
(Yields 𝑔𝑇 .)



TPR Results on FB’s bAbI task
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