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WIKIPEDIA From Wikipedia, the free encyclopedia

The Free Encyclopedia

Definition
Deep learning is a class of machine learning algorithms thatltl(pp193-200)

e use a cascade of many layers of nonlinear processing .

e are part of the broader machine learning field of learning
representations of data facilitating end-to-end optimization.

* |learn multiple levels of representations that correspond to
hierarchies of concept abstraction
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https://en.wikipedia.org/wiki/Deep_learning#cite_note-BOOK2014-1
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From Wikipedia, the free encyclopedia

Artificial intelligence (Al) is thmxhlblted by
machines or software. It is also the name of the academic field

of study on how to create computers and computer software
that are capable of intelligent behavior.

Artificial general intelligence

From Wikipedia, the free encyclopedia
Artificial general intelligence (AGI) is the intelligence of a (hypothetical) machine
that could successfully perform any intellectual task that a human being can. It is
a primary goal o(ﬁiﬁa—lﬁ@esearch and an important topic for science
fiction writers and futurists. Artificial general intelligence is also referred to as
"strong Al“... 3



https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Science_fiction
https://en.wikipedia.org/wiki/Futurist

Al/(A)GI & Deep Learning: the main thesis

Al/Gl = machine perception (speech, image, video, gesture,
touch...)

+ machine cognition (natural language, reasoning,
attention, memory/learning,

knowledge, decision making, action,
interaction/conversation, ...)

Gl: Al that is flexible, general, adaptive, learning from 1t
principles

Deep Learning + Reinforcement/Unsupervised Learning
—>Al/GlI



Al/Gl & Deep Learning: how AlphaGo fits

Al/Gl = machine perception (speech, image, video, gesture,
touch...)

+ machine cognition (

decision making,

+0: AlphaGo
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Outline

* Deep learning for machine perception
* Speech
* Image

* Deep learning for machine cognition

e Semantic modeling

Natural language

Multimodality

Reasoning, attention, memory (RAM)

Knowledge representation/management/exploitation
* Optimal decision making (by deep reinforcement learning)

* Three hot areas/challenges of deep learning & Al research



Deep learning Research: centered at NIPS
(Neural Information Processing Systems)
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NIPS : Conferences :
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MNIPS Home
Chverview
Conference Videos
Workshop Videos
Program Highlights
Tutorals
Conference Sessions
Workshops
Fublication Models
Demonstrations
Mini Symposia
Accepted Papers
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Neural Information
Processing Systems
Foundation

2009 : Program

Li Deng, Dong Yu, Geoffrev Hinton

Microsoft Research; Microsoft Research; University of Toronto

Deep Learning for Speech Recognition and Related Applications
7-30am - 6:30pm Saturday(December 12, 2009

Location: Hilton: Cheakamus

Abstract: Over the past 25 years or so, speech recognition technology has b
dominated by a “shallow™ architecture — hidden Markov models (HMMs). Sig
technological success has been achieved using complex and carefully engin
of HIMs. The next generation of the technology requires solutions to remain
challenges under diversified deployment environments. These challenges, nof
addressed in the past, arise from the many types of vanability present in the
generation process. Overcoming these challenges is likely to require “deep”
with efficient learning algorithms. For speech recognition and related sequent
recognition applications, some attempts have been made in the past to devel
computational architectures that are “deeper” than conventional HMMs, such
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Translator ..comes true!

Scientists See Promise in Deep-Learning Programs

John Markoff
November 23, 2012

Tianjin, ChinalOctober, 25, 2012

Deep learning
technology enabled
speech-to-speech
translation

| A voice recognition program translated a speech given by
B Microsoft Research Richard F. Rashid, M@top scientist, into Mandarin Chinese.
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Deep belief networks for phone recognition, NIPS, December 2009; 2012

= UNIVERSITY OF
¥ TORONTO &
Investigation of full-sequence training of DBNSs for speech recognition., Interspeech, Sept 2010 . *f
Binary coding of speech spectrograms using a deep auto-encoder, Interspeech, Sept 2010 4

Roles of Pre-Training & Fine-Tuning in CD-DBN-HMMs for Real-World ASR, NIPS, Dec. 2010
Large Vocabulary Continuous Speech Recognition With CD-DNN-HMMS, ICASSP._April 2011 M' oft@
Conversational Speech Transcription Using Contxt-Dependent DNN,Interspeech, Aug. 2011 ’cms

Making deep belief networks effective for LVCSR, ASRU, Dec. 2011 E
Application of Pretrained DNNs to Large Vocabulary Speech Recognition., ICASSP, 2012 GO gle

(2868] iU EAEME 2.0 EEFIERIH 2 2011, 2015 prxinne

0
Later years with rapid progress, Bai ¢é® Research W IFLYTEK

Y B Progress of spontaneous speech recognition
o) B|@| @] @y 1 100% ,
o ool @ CD-DNN-HMM invented, 2010
: fap Lot a.d . : o
@ olo/le) o ! I;
GG B [ BDf—{D bt 'f 70% ¥,
R AT - e AN = = I crimaces o .\,
[ A | : | _ast? | = 60%
' . Microsoft
‘- . S
- ; 40% '
- - 30% little progress for 10+ Vrs
10% MSR Rashid

Demo

B Microsoft Research


http://www.cs.utoronto.ca/~gdahl/papers/dbnPhoneRec.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=143619
http://research.microsoft.com/apps/pubs/default.aspx?id=144224
http://scholar.google.com/scholar_url?url=http://vincent.vanhoucke.com/publications/jaitly-interspeech12.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=21&ei=LibSVuvAA4mSjAHV_5_ICA&scisig=AAGBfm31Nz5rwrQtZiDuAayf5vs_3KjwaA&nossl=1&ws=838x592

Slide from Y. Bengio, Y. LeCun, G. Hinton (NIPS tutorial, Dec. 2015)

2010-2012: Breakthrough U speech
recognition > it Androids by 2012

100%a

According to Microsoft:

Deep learning

10%

4%

2%

1% s
1990 2000 2010




Across-the-Board Deployment of DNN in Speech Industry
(+ in university labs & DARPA programs) (2012-2014)

Skype to get real-time’ translator
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Enabling Cross-Lingual Conversations in Real Time

View milestones

on the path to HOW SHYPE USEI) AL'TO BUILD
pype Transiator 1 AMAZING NEW LANGUAGE
TRANSIATOR @

8 [aking a cue from science fiction,
I\/||crosoft demos 'universal translator’

B Microsoft Research
@ Updated‘IZ 35 F’[ ET, Thu October 16, 2014 0 ‘



In the academic world Sﬁﬁnalprocessn'\g
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namre International weekly jonrnal of science

LOUD AND CLEAR

- FUNDAMENTAL TECHNOLOGIES
Deep learning IN MODERN SPEECH RECOGNITION

Yann LeCun, Yoshua Bengio & Geoffrey Hinton

Affiliations | Corresponding author

Nature 521, 436444 (28 May 2015) | doii10.1038/nature14539
Received 25 February 2015 | Accepted 01 May 2015 | Published online __ ., __ __

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury

“This joint paper (2012) mm) Deep Neural Networks
from the major speech for Acoustic Modeling
recognition laboratories in Speech Recognition
details the first major The shared views of four research groups
Industrial application of
deep learning.”

TOLCOME UCHOA LE FTADIPAT



State-of-the-Art Speech Recognition Today



ASR: Neural Network Architectures at Google

Multi-Channel:

Single Channel: Multi-channel raw-waveform input for each channel
LSTM acoustic model trained with

- L Initial network layers factored to do spatial and
connectionist temporal classification (CTC)

spectral filtering
Results on a 2,000-hr English Voice Search
task show an 11% relative improvement

Papers: [H. Sak et al - ICASSP 2015,
Interspeech 2015, A. Senior et al - ASRU

Output passed to a CLDNN acoustic model, entire
network trained jointly

Results on a 2,000-hr English Voice Search task
show more than 10% relative improvement

2015]
Papers: [T. N. Sainath et al - ASRU 2015, ICASSP
2016]

Model WER Model WER
LSTM_W/ conventional 14.0 raw-waveform, 1ch 19.2
modeling

delay+sum, 8 channel 18.7
LSTM w/ CTC 12.9%

MVDR, 8 channel 18.8

(Sainath, Senior, Sak, Vinyals) factored raw-waveform, 2ch 17.1

Google (Slide credit: Tara Sainath & Andrew Senior)



Baidu’s Deep Speech 2 Bai @ Research
End-to-End DL System for Mandarin and English

Paper: bit.ly/deepspeech2

Input Eng“Sh _ Output
audio " Tt .
A (@ (@ @ (@ (@ @ (@ (@ @ @ (& . Human--l.evel Mandarin
ol el |lo| e e e e e e e o HE recognition on short queries:
Bl @ @] |@| o (e o o e o & O c — DeepSpeech: 3.7% - 5.7% CER
S [1®] (] 1®] ®]1®] (®]|®] | Bl - CAT — Humans: 4% -9.7% CER
il|e||e||o||@| || |e||e || o @ o _
2l lo||e| |e||e| |e||e||e e || | |0 X _
“llello| ol o] |o| el |o! o el o] o ]z * Trained on 12,000 hours of
_le/le] o] o e e e o o e o conversational, read, mixed
speech.
* 9layer RNN with CTC cost:
- Mandarin Output 2D invariant convolution
audio text 7 recurrent layers
S () Fully connected output
o] (0] (o] (@] (@] (e] @] (@] (@] (@] [0]| |+
ol |e||e||e||e||e| o o o |e |0 . : :
cl o] o] || o] || |e| || o] || |e]|o * Trained with SGD on heavily-
7 o] |o| o] |o||e||e| @ o e e |of| - optimized HPC system.
3l o] |o| o] |o| |o| o] || |e||®||®||e]|[® “SortaGrad” curriculum
&l |o| |o| |o| |e| |o||e| o || o || |0 learning.
o (e |of (e | e o e e oo |z
_ejligjlelleleeeieeeo =
& e “Batch Dispatch” framework
@ Convolution Layer for low-latency production
@ Recurrent Layer ) ) deployment.
© Fully Connected Layer  (Slide credit: Andrew Ng & Adam Coates)




Learning transition probabilities in DNN-HMM ASRm

DNN outputs include not only state posterior outputs but also HMM transition
probabilities

8.6 T T T T
bMMI ———
841 Siri d bMMI-+XEnt 1
: : 2| O\ iri data ™, MM -
Real-time reduction of 16% LN TM, BMMI+XENt - - - - |
WER reduction of 10% 7.8 |
x 7.6
L
= 74+ i
State posteriors  Transition probs 7.2
ATl 7r -
XX I 6.8 N
6.6 TS -
6.4 l l ! '
Q Q QQ 0.05 0.1 0.15 0.2 0.25 0.3 0.35
e RTF
XX

1] Figure 2: WER vs. RTF (dev set)

Matthias Paulik, “Improvements to the Pruning Behavior of DNN Acoustic

Models”. Interspeech 2015 (Slide: Alex Acero)



FSMN-based LVCSR System

U Feed-forward Sequential Memory
Network(FSMN)
[ Results on 10,000 hours Mandarin

short message dictation task
» 8 hidden layers
» Memory block with -/+ 15 frames
» CTC training criteria

( Comparable results to DBLSTM with

smaller model size

O Training costs only 1 day using 16 GPUs

and ASGD algorithm

“Vodel | sparai) | _cen 00

ReLU DNN 40 6.40
LSTM 27.5 5.25
BLSTM 45 4.67
FSMN 19.8 4.61
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Memory Block

F s

Input layer Kr

{a) Feedforward sequential memory neural network (FSMN)

{b) Memory block in FSMN as FIR filter

Shiliang Zhang, Cong Liu, Hui Jiang, Si Weli, Lirong Dai, Yu Hu. “Feedforward Sequential Memory Networks:
A New Structure to Learn Long-term Dependency ™. arXiv:1512.08031, 2015.

(slide credit: Cong Liu & Yu Hu)


http://arxiv.org/abs/1512.08301

English Conversational Telephone Speech Recognition* E

Key ingredients:

- Joint RNN/CNN acoustic model trained on (output layer )
2000 hours of publicly available audio

« Maxout activations

« Exponential and NN language models

bottleneck

'

(hidden layer )
i

WER Results on Switchboard Hub5-2000:

(hidden layer )

Model WER SWB | WER CH 4
CNN 10.4 17.9 ( conv. layer )
RNN 9.9 16.3 ("conv. layer )
Joint RNN/CNN 9.3 15.6

_ RNN features CNN features
+ LM rescoring 8.0% 14.1

*Saon et al. “The IBM 2015 English Conversational Telephone Speech Recognition System”, Interspeech 2015.

(Slide credit: G. Saon & B. Kingsbury)



&

Microsofft
MICROSOFT PROJECT OXFORD SERVICES

PROJECT OXFORD:

Compute m
APls

-{
g?

tanme - ~NLeCT and CoOrred

p API H E]
Speech APIls
- 4

)
[ -
mmon and
§ P ‘"‘"J "Cerdt g ratur i AN mm
tadored ot Ak .

3

R y N Wnguage comr "
280y f Apphicat =

(Slide credit: Xuedong Huang)



CNTK/Phily
Speed Comparison (Frames/Second, The Higher the Better)

80000
70000

We report 8 GPUs (2 machines) for CNTK as it is the only public
60000 toolkit that can scale beyond a single machine. CNTK on Azure

GPU Lab @an sale beyond 8 GPUs across multiple machines with
50000 superior digtributed system performance.
40000
30000
20000

Theano only supports1 GPU
1 . l I
; ]
CNTK Theano TensorF low Torch7

M1GPU m1x4GPUs m2x4GPUs(8 GPUs)

*Google updated that TensorFlow can now scale to support multiple machines recently;
comparisons have not been made yet

 Recent Research at MS (ICASSP-2016):

~“SCALABLE TRAINING OF DEEP LEARNING MACHINES BY INCREMENTAL BLOCK TRAINING WITH INTRA-
BLOCK PARALLEL OPTIMIZATION AND BLOCKWISE MODEL-UPDATE FILTERING”

““HIGHWAY LSTM RNNs FOR DISTANCE SPEECH RECOGNITION”

-~"SELF-STABILIZED DEEP NEURAL NETWORKS’



Deep Learning also Shattered Image Recognition
(since 2012)

23



IMAGE Competition

Progress of object recognition (1k ImageNet)

30%

shallow model

25%

Bt

UNIVERSITY OF

% TORONTO
deep model
15t year

20%

15%

Top-5 classification error rate

| deep model
10% deep model 3rd year

2nd year Ath
) ear

\*3; - Announced
3.567% >81%
Dec.2015
2012 - 2015

Super-deep: 152 layers Y —

Google

B Microsoft Research



= MIEEDR

MICROSOFT NEURAL NET SHOWS DEEP LEARNING
CAN GET WAY DEEPER

Microsoft beats Google, Intel, Tencent, and Qualcomm
in 1mage recognltlon competition

JORDAN ER 10, 2015
TAGS: ARTIFICIAL INTELLIGENCE, DEEP LEARNING, IBM, IMAGE RECOGNIT MAGENET, MICR )FT, MICROSOFT RESEARCH, NVIDIA, SOFTLAYER

IPod
(trademark) a pocket-sized device used

B Microsoft Research



Depth is of crucial importance

AlexNet, 8 layers | S T | VGG, 19 layers
(ILSVRC 2012) |5 conv, 256,p00/2 | (ILSVRC 2014)

I 3x3 conv, 384 I

<
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| 3x3 conv, 384 |

<

[ 3x3 conv, 256, pool/2 |

<

| fc, 4096 |

oy

| fc, 4096 |

v

| fc, 1000 |

ILSVRC (Large Scale Visual Recognition Challenge)
(slide credit: Jian Sun, MSR)
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Depth is of crucial importance

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

[]
B Microsoft Research

ILSVRC (Large Scale Visual Recognition Challenge)
(slide credit: Jian Sun, MSR)




Depth is of crucial importance

—

Ix conv, 64

3x3 conv, 64

Ix1 conv, 256
—

IxI conv, 64

3x3 conv, 64

IxL conv, 256

1x1 conv, 64

3x3 conv, 64

IxI conv, 256
—

Ix2 conv, 128, /2

3x3 conv, 128

IxI conv, 512

IxLconv, 128

3x3 conv, 128

IxL conv, 512
—

IxI conv, 128
[ 33conv, 128 |

1x1 conv, 512

ResNet, 152 layers

[]
B Microsoft Research

—
Ix1 conv, 128
3x3 conv, 128
Ix1 conv, 512
Ix1 conv, 128
3x3 conv, 128
IxL conv, 512
—
Ix1 conv, 128
[ 33conv, 128 |

1x1 conv, 512

—
1x1 conv, 128

(slide credit: Jian Sun, MSR)




Outline

* Deep learning for machine cognition

e Semantic modeling

Natural language

Multimodality

Reasoning, attention, memory (RAM)

Knowledge representation/management/exploitation

Optimal decision making (by deep reinforcement learning)



Deep Semantic Model for Symbol Embedding

similar apart

t

‘.'L
1251 V2 g

w,, t

EXXENY
W, 3

d=500
we o 4
dim = 50K dim = 50K

Semantic vector S Vg +

@ d=300
Ws,4 t

Letter-trigram
embedding matrix

Letter-trigram encoding dim = 50K

matrix (fixed) —> W,, t W4 t

dim = 100M dim = 100M

s: "racing car” t7: "formula one” t2: “racing to me”

Bag-of-words vector dim = 100M

Input word/phrase

Huang, P., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. Learning deep structured semantic models for

web search using clickthrough data. In ACM-CIKM, 2013.



Many applications of Deep Semantic Modeling:
Learning semantic relationship between “Source” and “Target”

Word semantic embedding

Web search

Query intent detection
Question answering
Machine translation
Query auto-suggestion
Query auto-completion
Apps recommendation

Distillation of survey feedbacks

Automatic image captioning

Image retrieval

Natural user interface

Ads selection

Ads click prediction

Email analysis: people prediction
Email search

Email declutering

Knowledge-base construction

Contextual entity search

Automatic highlighting

e P . N .

context

search query

Search query

pattern / mention (in NL)
sentence in language a
Search query

Partial search query
User profile

Feedbacks in text

image

text query

command (text / speech / gesture)
search query

search query

Email content

Search query

Email contents

entity from source

key phrase / context

documents in reading

) PR I

word

web documents

Use intent

relation / entity (in knowledge base)
translated sentences in language b
Suggested query

Completed query

recommended Apps

Relevant feedbacks

text caption
images

actions

ad keywords

ad documents
Recipients, senders
Email content

Email contents in similar threads

entity fitting desired relationship

entity / its corresponding page

key phrases to be highlighted

ettt chavd Foawd



Automatic image captioning (MSR system)

_
(i, ; Computer
' : Syetem ' ER g =B gy =

a red stop sign sitting under a traffic light on a city street Caption

a stop sign at an intersection on a street Generation

! ! ! ! a stop sign with two street signs on a pole on a sidewalk System
a stop sign at an intersection on a city street a stop sign at an intersection on a city street
|

a stop sign
a red traffic light

Semantic I
Ranking 4

System

Fang, Gupta, landola, Srivastava, Deng, Dollar, Gao, He, Mitchell, Platt, Zitnick, Zweig, “From captions to
visual concepts and back,” CVPR, 2015



a woman in a kitchen preparing
food

woman working on counter near
kitchen sink preparing a meal




a woman in a kitchen preparing
food

woman working on counter near
kitchen sink preparing a meal




COCO Challenge Results (CVPR-2015, Boston)

M1 M2 IF ™3 M4 M5
Human®! 0.638 0.675 4.836 3.428 0.352
. [8]

Tied for MSR 0.268 4157 2.662 0.234

15t prize \_ Google® 0.273 4,107 2.742 0.233
MSR Captivator®™  0.250 0.301 4,149 2.565 0.233
Montreal/Toronto  0.262 0.272 3.932 2.832 0.197
[10]
Berkeley LRCNE 0.246 0.268 3.924 2.786 0.204
Nearest Neighbor 0.216 0.255 3.801 2.716 0.196
[11]

M1 Percentage of captions that are evaluated as better or equal to human caption.

@ Percentage of captions that pass the
M3 Average correctness of the captions on a scale 1-5 (incorrect - correct).
M4 Average amount of detail of the captions on a scale 1-5 (lack of details - very detailed).

M5 Percentage of captions that are similar to human description.



Deep Learning for Machine Cognition

--- Deep reinforcement learning
--- “Optimal” actions: control and business decision making

37



nature.............
LETTER

doi:10.1038/naturel4236

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller!, Andreas K. Fidjelandl, Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’, loannis Antnnoglnul,
Helen l{ingl, Dharshan Kumaran', Daan Wierstra', Shane Legg1 & Demis Hassabis'

The theory of reinforcement learning provides a normativeaccount', agentis to select actions in a fashion that maximizes cumulative future
deeply rooted in psychological® and neuroscientific® perspectives on  reward. More formally, we use a deep convolutional neural network to
animal behaviour, of how agents may optimize their control of an  approximate the optimal action-value function

environment. To use reinforcement learning successfully in situations

. . - a
. V(s.a)= maxH|r;+vr Ver ...|5, =35, a;,=a, :rr]ﬁ
annrnachinoe realownreld comnlevitey hoawever acente are com franted Q‘ |: '] - 4] T Firtl - £t - | ¥ d

Reinforcement learning from “non-working” to “working”, due to
Deep Learning (much like DNN for speech) 38



Deep Q-Network (DQN)

Convghation Coemglution Fuily connectad Fulh g-.:
o & /o 5 L.
| - g’_é i to predictions
mapping raw Ecoeosi-0 o = * of final score
screen pixels o e for each of 18
bl = \a = joystick actions
==

* Input layer: image vector of s
* Qutput layer: a single output Q-value for each action a, Q(s, a, )
* DNN parameters: 6



Reinforcement Learning

Short-term Long-term

Playing the
Breakout game

Optimizin _ T :

B:siness 8 Maximize Optimize life-time revenue,
Decision immediate service usage_s, anc-l

Making reward customer satisfaction

Self play to improve skills

«0+ AlphaGo




nature International weekly journal of seience

Home | Mews & Comment | Research | Careers & Jobs | Current Issue

ARTICLE PREVIEW

view full access options

At last — a computer program that
can beat a champion Go player rsz <

NATURE | ARTICLE ALL SYSTEMS GO
~ /

BHFZEH

e r
SONGBIRDS SAFEGUARD
)y s ’a &

Mastering the game of Go with deep neural
networks and tree search

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, llya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis

Affiliations | Contributions | Corresponding authors

Mature 529, 484489 (28 January 2016) | doii10.1038/nature16961
Received 11 November 2015 | Accepted 05 January 2016 | Published online 27 January 2016



DNN learning pipeline in

Rollout policy  SL policy network RL policy network Value network

p.‘z pg P ]:9

Human expert positions Self-play positions

MoamgaU |BINap

BlE(]

42



DNN architecture used in

b

Policy network Value network

p,, (@ls) Vs (5)

@
G

®




Analysis of four DNNs in

-0+ AlphaGo

DNNs Properties Architecture Additional details

g (als) Slow, accurate stochastic 13 layer network; alternating Evaluation time: 3ms
supervised learning policy, ConvNets and rectifier non- Accuracy vs. corpus: 57%
trained on 30M (s,a) pairs linearities; output dist. over Train time: 3 weeks

all legal moves
i (als) Fast, less accurate stochastic Linear softmax of small pattern Evaluation time: 2 us
SL . .

SL policy, trained on 30M features Accuracy vs. corpus: 24%
(s,a) pairs

mgy(als) Stochastic RL policy, trained Same as sy, Win vs. Tgy, : 80%
by self-play

V(s)

Value function: % chance of
TR, winning by starting in
state s

Same asTsz , but with one
output (% chance of
winning)

15K less computation than evaluating gy

with roll-outs



Monte Carlo Tree Search in

n(s) = argmax, Q(s,a)

Q(s,a) = Q'(s,a) + u(s,a)
I I

Roll-out Exploration
estimate bonus
Mixture weight

1 /\ .
I( - i i
s,a) =——— E (1-AD)V(s;)+ 1z
¢ N(s,a) i[ /( L) d
# of times action a Value function Win/loss result of 1
taken in state s computed in advance  roll-out with fis,(als)

\/ZbN(S»b)
1+ N(s,a)

u(s,a) = c-mg (als)

* Think of this MCTS component as a highly efficient “decoder”, a concept familiar to ASR

* > A*search and fast match in speech recognition literature during 80’s-90’s

* Thisis tree search (GO-specific), not graph search (A*)

* Speech is a relatively simple signal = sequential beam search sufficient, no need for A* or tree
* Key innovation in AlphaGO: “scores” in MCTS computed by DNNs with RL



Deep Learning for Machine Cognition

--- Memory & attention (applied to machine translation)
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Long Short-Term Memory RNN

(Hochreiter & Schmidhuber, 1997)



LSTM cell unfolding over time

Ct-]
1 = tanh(Wximt + Whihe 1 + bl)
o = sigm(Wyx, + Whihi—1 + by)
fi = sigm(Wxex + Wiehi—1 + bg)
Hea o = tanh(Wyoxy + Whohi—1 + bo)
e = 1O fi +ig© g
hy = tanh(c;) © oy
Xt

Figure 1. The LSTM architecture. The value of the cell is in-

creased by i+ © j¢, where © is element-wise product. The LSTM’s

output is typically taken to be h;, and ¢; 1s not exposed. The for- (Jozefowics, Zarembe, Sutskever,

get gate f; allows the LSTM to easily reset the value of the cell. ICML 2015) 49



Gated Recurrent Unit (GRU)

(simpler than LSTM; no output gates)

ry = sigm (Wexy + Wirhe—1 + b))

ze = sigm(Wexe + Wihe 1 +b,)

he = tanh(Winoi + Win(re © he—1) + by)
hy = zOh 1+ (1 —2z)0h

Xt

Figure 2. The Gated Recurrent Unit. Like the LLSTM, it is hard to

tell, at a glance, which part of the GRU is essential for its func-
tioning. (Jozefowics, Zarembe, Sutskever, ICML 2015; Google

Kumar et al., arXiv, July, 2015; Metamind)
50



Seq-2-Seq Learning (Neural Machine Translation)

[Sutskever, Vinyals, Le, NIPS, 2014]

LSTM/GRU Decoder

i
[ |
LSTM/GRU Encoder X Y & Q
)
A B A o
[ )
e - > R > . R ——




Neural Machine Translation

J= ik, crodssanoe, SonreEnegee, £ ewl, raleinee, oof, dermeires, Eeer, |

“Thought vector”
Pl 3
ﬁ E E (Forcada&Neco, 1997;
3 Castano&Casacuberta, 1997,
: o Kalchbrenner&Blunsom, 2013;
™ E Sutskever et al., 2014;
|'-'|I-.|.-m'|-.-r:|'u.'. groswth, has, showed down, in, recent. years, .| Cho et aI., 2014)

(slide credit: Kyunghyun Cho, 2016) 52



Neural Machine Translation

 This model replying “thought vector” does not perform well
« Especially for long source sentences

e Because:

j |La CTRRANCE, SN, 3'cal, micnie, ook, denmdes, mdes, '|

“You can’t cram the meaning of a whole :
%&!$# sentence into a single $&H#* vector!” -~
Ray Mooney E

[T
=
el
=
="
o
ﬂ

¢ = | Feonoende, growih, has, show sl down, in, recent, years, .|

1apo2a(]

53
(modified from: Kyunghyun Cho, 2016)



Neural Machine Translation with Attention

JF=iLa. croissance, dconomique, £est, ralentie, ces, derniéres, anndes, )

Attention-based Model

_E
- Encoder: Bidirectional RNN e
« A set of annotation vectors e ug
{hi, ha, ... hr) |
=3 o L
« Attention-based Decoder -+ 2 Sy S T
\ e N el
(1) Compute attention weights - ., . = == == = = = = W
: 3 e O 0000, 0.0.0,0
Qrgr it X eXp(e(zt’_lﬂ Ut —1, ht)) e = {Economie, growth, has, slowed. down, in. recemt, years, .}
(2) Weighted-sum of the annotation vectors
T
Cv =D Qi thy
(3) Use ¢ to replace “though vector” A
54

(modified from: Kyunghyun Cho, 2016)



BENCHMARK: WMT'14 EN-DE

VIR Phrase-hased M R R SRR SR PR S S
(Buck et al., 2014)

I B i 2
120 g i ke bk Large Target Vocabulary | S
OOV Replacement (Jean et al., 2015,
(Jean et al., 2015; Luong et al., 2015)
6 _____________________ Luong et al., 2015) [ —————— E
Location+Content, Local+Global

(Bahdanau et al., 2015) (Luong et al., 2015a)
Dec 2014 June 2015

(modified from: Kyunghyun Cho)



Models for Global & Local Attention

Context vector suis Context vector Ssuis

LT

| am a student _ Je |  am a student _ Je
Global: all source states. Local: subset of source states.

(Luong et al., 2015)



BENCHMARK: WMT'15 EN-DE

BPE-based sub words
+ Monolingual corpus
+ Ensemble
(Sennrich et al., 2015a)

Large Target Vocabulary BPE-based sub words
27.5 IEYele)Y replacement + Monolingual corpus
+ Ensemble (Sennrich et al., 2015a)

(Jean et al., 2015)

26.25

23.75 e Syntax-based MT
(Sennrich & Haddow, 2015)

e o e

BPE-based sub words

(Sennrich et al., 2015)

Large Target Vocabulary
+ OOV replacement
(Jean et al., 2015)

(modified from: Kyunghyun Cho)
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Same Attention Model applied to
Image Captioning

] m man, is, jumping, into, a, lake, .p

Topics: Beyond Natural Languages 5 tu,
— Image Caption Generation

f/’//’

 Conditional language modelling

p(Two, dolphins, are, diving|

* Encoder; convolutional network
* Pretrained as a classifier or autoencoder
* Decoder: recurrent neural network

*RNN Language model

* With attention mechanism (Xu et al., 2015)



Deep Learning for Machine Cognition

--- Neural reasoning: memory network
--- Better neural reasoning: Tensor Product Representations
(TPR) with structured knowledge representation

59



Memory Networks for Reasoning

Predicted / :
0 :@—u W Ansier f|]5
ff £l s .
" '} /) Pradicted
r Welghted sum \ i - - ,ﬁ,nstm:
Embedding ¢ e
ek b
, |
Sentences | P]I'III T ] I .
[xi] softmax ), E
( \ |
L J
. ol
Cbeddinga | - -
hnnerPrudu:t I
! Embeding = |
I B
Question | Quastion g ”
) Wb
U1

Rather than placing
“attention” to part of a
sentence, it can be placed
to cognitive space with
many sentences

This allows “reasoning”
Embedding input

m; =Axl-
Ci = Cxl-
u = Bq

Attention over memories
p; = softmax(u’m;)

Generating the final
answer

0 = X DiC;

a = softmax(W (o + u))

[Sukhbaatar Szim Weston Ferous: “End-to-end memorv networks” NIPS 20151


http://arxiv.org/pdf/1503.08895v5.pdf

Semantic
Memory

Episodic Mer‘llorv

Module

Module

Answer
= Word
vectors - — . _
* Knowledge K === - TI——
Basis
Input Text Sequence Question
Semantic Memory Episodic Memory , J 2 Aemer module
e, [ e, €, e

Innnn;
N )
2
o
2

[Kumar, Irsoy, ...Socher: “Ask me anything: Dynamic Memory Networks for NLP,” NIPS, 2015]



http://arxiv.org/pdf/1503.08895v5.pdf

O Episodic Memory o Episodic Memory

Answer_| Answer |
Attention Memory | [™| Kitchen Attention Memory | [ Palm
Mechanism Update Mechanism Update
R : 2 | [Guestion ] lnPUt Module Question |
John moved to the garden. Where is the What kind of
apple? ! 1 tree is in the
John got the apple there. background?
John moved to the kitchen.
Sandra got the milk there.
John dropped the apple.
John moved to the office.
(a) Text Question-Answering (b) Visual Question-Answering

[Xiong, Merity, Socher: “Dynamic Memory Networks for visual & textual question answering,”ArXiv, Mar 4, 2016]
Reported in New York Times, Mar 6, 2016 62



e Structured embedding vectors via tensor-product rep (TPR)

symbolic semantic parse tree (complex relation)

Then, reaso_ninﬁ in symbolic-space (traditional Al) can be beautifully
carried out in the continuous-space in human cognitive and neural-
net terms

the harmonic mind

Paul Smolensky & G. Legendre:
The Harmonic Mind, MIT Press, 2006

From Neural Computation to Optimality-Theoretic Grammar




Outline

* Three hot areas/challenges of deep learning & Al research



Challenges for Future Research

1. Structured embedding for better reasoning: integrate
symbolic/neural representations

2. Integrate deep discriminative & generative/Bayesian
models

3. Deep Unsupervised Learning

65



f

f(s) = cons(ex,(ex,(ex,(s))),
ex, (ex,(ex,(s))). ex,(s))

Few leaders are admired by George Bush

A 4

admire(George Bush, few leaders)

W = Wconso[WexlwexOWexi] +
Wcons][ Wex1Wex1Wex1 Wexo ]

Meaning (LF)

A P;sSTon

by ﬁ Isomorphism

13 . ”
Passive sentence

Slide from Paul Smolensky, 2015



Recurrent NN vs. Dynamic System

h, = f(h—1:Wpp, Wi . X;)

Yi = g(hy: W)

Parameterization:
* Whn, Why, Wyp: all unstructured
regular matrices

h, = i?(ht—l;‘vfﬂtff)

F(ht,Q;f)

Zz
|

Parameterization:
Wy, =Mly;); sparse system matrix
« Wq =(Q); Gaussian-mix params; MLP




_ Deep Discriminative NN Deep Generative (Bayesian)

Struc

domain knowledge

Semi/unsupervised
nterpretability
Repr
Inference/decode
Scalability/compute
Incorp. uncertainty

Empirical goal

Terminology

Learning algorithm

Evaluation

Implementation

Experiments

Parameterization

ncorp constraints &

Graphical; info flow: bottom-up

Harder; less fine-grained

Hard or impossible

Harder

Distributed

Easy

Easier (regular computes/GPU)
Hard

Classification, feature learning, ...

Neurons, activation/gate functions,
weights ...

A single, unchallenged, algorithm --
BackProp

On a black-box score — end
performance

Hard (but increasingly easier)
Massive, real data

Dense matrices

Graphical; info flow: top-down

Easier; more fine grained

Easier, at least possible

Easy (generative “story” on data and hidden variables)
Localist (mostly); can be distributed also
Harder (but note recent progress)

Harder (but note recent progress)

Easy

Classification (via Bayes rule), latent
variable inference...

Random vars, stochastic “neurons”,
potential function, parameters ...

A major focus of open research, many
algorithms, & more to come

On almost every intermediate quantity

Standardized but insights needed
Modest, often simulated data

Sparse (often PDFs); can be dense



Deep Unsupervised Learning

Unsupervised learning (UL) has recently been a very hot topic in
deep learning

Need to have a task to ground UL --- e.g. help improve prediction

Examples of speech recognition and image captioning:
e 3000 hrs of paired acoustics (X) & word label (Y)

 How can we exploit 300,000+ hrs of speech acoustics with no paired
labels?

4 sources of knowledge
— Strong structure prior of “labels” Y (sequences)
— Strong structure prior of input data X (conventional UL)
— Dependency of x on y (generative modeling for embedding knowledge)
— Dependency of y on x (state of the art systems w. supervised learning)



/]

N theory there is
no difference
oetween theory
and practice, but
in practice there is”

Jan L. A. van de Snepscheut]




End
(of Chapter 1)

Thank you!
Q/A
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Tensor Product Rep for reasoning

Category 17: Positional Reasoning
01: The triangle 1s above the pink rectangle.
02: The blue square 1s to the left of the tnangle.

¢ Fa ce bOO k'S reasoning tasK |03: Is the pink rectangle to the right of the blue

square? yes 1

Category 4. Two Argument Relation
01: The office 1s north of the kitchen.

01: The red sphere 1s below the vellow square.

02: The garden is south of the kitchen 02: The red sphere 1s above the blue square.

{]g What is north ;afth e kitchen? offi c:-e 1 03: Is the blue square below the vellow square?
yes |

01: The kitchen 1s west of the garden. ——

02: The hallway 1s west of the kitchen. Category 19: Pﬂt_h Finding

03: What 1s the garden east of? kitchen | 01: The bedroom 1s south of the hallway.

02: The bathroom 1s east of the office.

03: The kitchen 1s west of the garden.

04: The garden 1s south of the office.

05: The office 15 south of the bedroom.

06: How do vou go from the garden to the bed-
room? n.n 4 >

arXiv.org = cs > arXiv:1511.06426

Computer Science > Computation and Language

Reasoning in Vector Space: An Exploratory Study of Question Answering

Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, Li Deng, Paul Smolensky

(Submitted on 19 Nov 2015)  Accepted to ICLR, May 2016



Structured Knowledge Representation & Reasoning via

TPR

# Statements/Questions Relational Translations/Answers Encodings/C lues

1 Mary went to the kitchen, Mary belongs to the kitchen (from nowhere). mk’ m(kon)’
3 Mary got the football there. The football belongs to Mary. fm®  fmT

4  Mary travelled to the garden.  Mary belongs to the garden (from the kitchen). mg® m(gok)T
5  Where 1s the football? garden 3.4

9 Mary dropped the football. The football belongs to where Mary belongs to. fg*  fg'

10 Mary journeyed to the kitchen. Mary belongs to the kitchen (from the garden). mk? m(ko g)T
11 Where 1s the football? garden ). 4

Given containee-container relationship

Encode all entities (e.g., actors (mary), objects (football), and locations (nowhere, kitchen,
garden)) by vectors

Encode each statement by a matrix via binding (tensor product of two vectors), mk”
Reasoning (transitivity) by matrix multiplication, (fm?) - (mg") = f(m" - m)g” = fg*
Generate answer (e.g., where is the football in #5) via unbinding (inner product)

a. Left-multiply by fT all statements prior to the current time. (Yields fT - mkT, fT - fg7)

b. Pick the most recent container where 2-norms of the multiplications in (a) are approximately 1.0.
(Yields g7 .)



TPR Results on FB’s bAbl task

Tvpe Cl1 C2 Cc3 C4 C5 Cé6 C7 C8 C9 C10
Accuracy 100%  100%  100%  100%  99.3%  100% 96.9% 96.5%  100% 99%
Model MNN MNN MNN MNN DMN MNN DMN DMN DMN SSVM
Type C11 C12 C13 C14 C15 C16 C17 C18 Cc19 C20
Accuracy 100%  100%  100%  100%  100%  100% 72% 95% 36% 100%
Model MNN MNN MNN DMN MNN MNN Muyltitask MNN MNN  MNN

Table 4: Best accuracies for each category and the best model which achieved the best accuracy.
MNN indicates Strongly-Supervised MemNN trained with the clue numbers. and DMN indicates

Dynamic MemNN, and SSVM indicates Structured SVM with the coreference resolution and SRL
features. Multitask indicates multitask training.

Type C1 C2 C3 C4 C35 Cé6 Cc7 C8 Cc9 C10
Training 100%  100%  100%  100% 99.8%  100%  100% 100% 100% 100%
Test 100%  100%  100%  100%  99.8%  100%  100% 100% 100%  100%
Type C11 C12 C13 C14 C135 C16 C17 C18 C19 C20
Training 100%  100%  100%  100%  100%  99.4% 100% 100% 100% 100%
Test 100%  100%  100%  100%  100%  99.5% 100% 100% 100%  100%

Table 5: Accuracies on training and test data on our models. We achieve near-perfect accuracies in
almost every category including positional reasoning and path finding.
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CHAPTER 1.2

o

DEEP DISCRIMINATIVE AND GENERATIVE MODELS FOR
PATTERN RECOGNITION

B wora scientiic

Li Deng! and Navdeep Jaitly?

Y Microsoft Research, One Microsoft Way, Redmond, WA 98052
2 Google Research, 1600 Amphitheatre Parkway, Mountain View, CA 94043
E-mails: deng@microsoft.com; ndjaitly@google.com

In this chapter we describe deep generative and discriminative models as they
have been applied to speech recognition and related pattern recognition problems.
The former models describe the distribution of data or the joint distribution
of data and the corresponding targets, whereas the latter models describe the
distribution of targets conditioned on data. Both models are characterized as
being ‘deep’ as they use layers of latent or hidden variables. Understanding



